Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Edge Computing Architectures for Enabling the Realisation of the Next Generation Robotic Systems
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Signals and Systems.ORCID iD: 0000-0001-9685-1026
Ericsson Reasearch, Luleå.
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Signals and Systems.ORCID iD: 0000-0003-1437-1809
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Signals and Systems.ORCID iD: 0000-0001-8235-2728
Show others and affiliations
2022 (English)In: 2022 30th Mediterranean Conference on Control and Automation (MED), IEEE, 2022, p. 487-493Conference paper, Published paper (Refereed)
Abstract [en]

Edge Computing is a promising technology toprovide new capabilities in technological fields that require instantaneous data processing. Researchers in areas such asmachine and deep learning use extensively edge and cloud computing for their applications, mainly due to the significant computational and storage resources that they provide. Currently, Robotics is seeking to take advantage of these capabilities as well, and with the development of 5G networks, some existing limitations in the field can be overcome. In this context, it is important to know how to utilize the emerging edge architectures, what types of edge architectures and platforms exist today and which of them can and should be used based on each robotic application. In general, Edge platforms can be implemented and used differently, especially since there are several providers offering more or less the same set of serviceswith some essential differences. Thus, this study addresses these discussions for those who work in the development of the next generation robotic systems and will help to understand the advantages and disadvantages of each edge computing architecture in order to choose wisely the right one for each application.

Place, publisher, year, edition, pages
IEEE, 2022. p. 487-493
Series
Mediterranean Conference on Control and Automation (MED), ISSN 2325-369X, E-ISSN 2473-3504
Keywords [en]
Robotics, Edge Computing
National Category
Control Engineering
Research subject
Robotics and Artificial Intelligence
Identifiers
URN: urn:nbn:se:ltu:diva-92485DOI: 10.1109/MED54222.2022.9837289ISI: 000854013700081Scopus ID: 2-s2.0-85136265211OAI: oai:DiVA.org:ltu-92485DiVA, id: diva2:1687504
Conference
30th Mediterranean Conference on Control and Automation (MED), Vouliagmeni, Greece, June 28 - July 1, 2022
Projects
AERO-TRAIN
Funder
EU, Horizon 2020, 953454
Note

ISBN för värdpublikation: 978-1-6654-0673-4 (electronic), 978-1-6654-0674-1 (print)

Available from: 2022-08-15 Created: 2022-08-15 Last updated: 2023-09-20Bibliographically approved
In thesis
1. Towards Enabling the Next Generation of Edge Controlled Robotic Systems
Open this publication in new window or tab >>Towards Enabling the Next Generation of Edge Controlled Robotic Systems
2023 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis introduces a novel framework for edge robotics, enabling the advancement of edge-connected and controlled robots. Autonomous robots, such as Unmanned Aerial Vehicles (UAVs), generate vast amounts of multi-sensor data and rely on complex algorithms. However, their computational requirements often necessitate large onboard computing units, limiting their flight time and payload capacity. This work presents a key contribution towards the development of frameworks that facilitate offloading computational processes from robots to edge computing clusters. Specifically, we focus on offloading computationally intensive Model Predictive Control (MPC) algorithms for UAV trajectory control. To address the time-critical nature of these procedures, we also consider latency and safety measures. By leveraging edge computing, we can achieve the required computational capacity while minimizing communication latency, making it a promising solution for such missions. Furthermore, edge computing enhances the performance and efficiency of MPCs compared to traditional onboard computers. We evaluate this improvement and compare it to conventional approaches. Additionally, we leverage Docker Images and Kubernetes Clusters to take advantage of their features, enabling fast and easy deployment, operability, and migrations of the MPC instances. Kubernetes automates, monitors, and orchestrates the system’s behavior, while the controller applications become highly portable without extensive software dependencies. This thesis focuses on developing real architectures for offloading MPCs either for controlling the trajectory of single robots or multi-agent systems, while utilizing both on-premises small-scale edge computing setups and edge computing providers like the Research Institutes of Sweden (RISE) in Luleå. Extensive simulations and real-life experimental setups support the results and assumptions presented in this work.

Place, publisher, year, edition, pages
Luleå: Luleå University of Technology, 2023
Series
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757
Keywords
Edge Robotics, Edge Computing, Robotics
National Category
Robotics
Research subject
Robotics and Artificial Intelligence
Identifiers
urn:nbn:se:ltu:diva-101400 (URN)978-91-8048-379-7 (ISBN)978-91-8048-380-3 (ISBN)
Presentation
2023-11-14, A1547, Luleå tekniska universitet, Luleå, 09:00 (English)
Opponent
Supervisors
Available from: 2023-09-21 Created: 2023-09-20 Last updated: 2023-10-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Seisa, Achilleas SantiSatpute, SumeetKoval, AntonNikolakopoulos, George

Search in DiVA

By author/editor
Seisa, Achilleas SantiSatpute, SumeetKoval, AntonNikolakopoulos, George
By organisation
Signals and Systems
Control Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 85 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf