Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Anomaly Detection on Bitcoin, Ethereum Networks Using GPU-accelerated Machine Learning Methods
Georgia Institute of Technology, Georgia, USA.
LuleƄ University of Technology, Department of Computer Science, Electrical and Space Engineering.
2021 (English)In: 31st International Conference on Computer Theory and Applications, ICCTA 2021: Conference Proceedings, IEEE, 2021, p. 166-171Conference paper, Published paper (Refereed)
Place, publisher, year, edition, pages
IEEE, 2021. p. 166-171
Keywords [en]
Anomaly Detection, Bitcoin, Blockchain, Cryptocurrency, Ethereum, Fraud, GPU-acceleration, Logistic Regression, Machine Learning, Random Forest, SVM
National Category
Computer Systems Computer Sciences
Identifiers
URN: urn:nbn:se:ltu:diva-94860DOI: 10.1109/ICCTA54562.2021.9916625Scopus ID: 2-s2.0-85141351251OAI: oai:DiVA.org:ltu-94860DiVA, id: diva2:1720204
Conference
31st International Conference on Computer Theory and Applications (ICCTA 2021), Alexandria, Egypt, December 11-13, 2021
Note

ISBN for host publication: 978-1-6654-7854-0

Available from: 2022-12-19 Created: 2022-12-19 Last updated: 2022-12-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Manzi, Oliver
By organisation
Department of Computer Science, Electrical and Space Engineering
Computer SystemsComputer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 120 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf