Hyperseed: Unsupervised Learning With Vector Symbolic Architectures Show others and affiliations
2024 (English) In: IEEE Transactions on Neural Networks and Learning Systems, ISSN 2162-237X, E-ISSN 2162-2388, Vol. 35, no 5, p. 6583-6597Article in journal (Refereed) Published
Place, publisher, year, edition, pages IEEE , 2024. Vol. 35, no 5, p. 6583-6597
Keywords [en]
Hyperseed, neuromorphic hardware, self-organizing maps (SOMs), vector symbolic architectures (VSAs)
National Category
Computer Sciences
Research subject Dependable Communication and Computation Systems
Identifiers URN: urn:nbn:se:ltu:diva-94924 DOI: 10.1109/TNNLS.2022.3211274 ISI: 000890842400001 PubMedID: 36383581 Scopus ID: 2-s2.0-85142777444 OAI: oai:DiVA.org:ltu-94924 DiVA, id: diva2:1720742
Funder The Swedish Foundation for International Cooperation in Research and Higher Education (STINT), MG2020-8842
Note Validerad;2024;Nivå 2;2024-05-21 (joosat);
Funder: Intel Neuro-morphic Research Community Grant to the Luleå University of Technology; Russian Science Foundation during the period of 2020–2021 (Grant 20-71-10116); Centre for Data Analytics and Cognition (CDAC); European Union’s Horizon 2020 Research and Innovation Program, Marie Skłodowska-Curie (Grant 839179);
2022-12-202022-12-202024-05-21 Bibliographically approved