Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A note on mass-minimising extensions
School of Science and Technology, University of New England, Armidale, 2351, Australia.ORCID iD: 0000-0001-9536-9908
2015 (English)In: General Relativity and Gravitation, ISSN 0001-7701, E-ISSN 1572-9532, Vol. 47, no 12, article id 145Article in journal (Refereed) Published
Abstract [en]

A conjecture related to the Bartnik quasilocal mass, is that the infimum of the ADM energy, over an appropriate space of extensions to a compact 3-manifold with boundary, is realised by a static metric. It was shown by Corvino (Commun Math Phys 214(1):137–189, 2000) that if the infimum is indeed achieved, then it is achieved by a static metric; however, the more difficult question of whether or not the infimum is achieved, is still an open problem. Bartnik (Commun Anal Geom 13(5):845–885, 2005) then proved that critical points of the ADM mass, over the space of solutions to the Einstein constraints on an asymptotically flat manifold without boundary, correspond to stationary solutions. In that article, he stated that it should be possible to use a similar construction to provide a more natural proof of Corvino’s result. In the first part of this note, we discuss the required modifications to Bartnik’s argument to adapt it to include a boundary. Assuming that certain results concerning a Hilbert manifold structure for the space of solutions carry over to the case considered here, we then demonstrate how Bartnik’s proof can be modified to consider the simpler case of scalar-flat extensions and obtain Corvino’s result. In the second part of this note, we consider a space of extensions in a fixed conformal class. Sufficient conditions are given to ensure that the infimum is realised within this class.

Place, publisher, year, edition, pages
Springer, 2015. Vol. 47, no 12, article id 145
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:ltu:diva-95206DOI: 10.1007/s10714-015-1993-2ISI: 000365414400004Scopus ID: 2-s2.0-84946569006OAI: oai:DiVA.org:ltu-95206DiVA, id: diva2:1725081
Available from: 2023-01-10 Created: 2023-01-10 Last updated: 2023-05-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

McCormick, Stephen

Search in DiVA

By author/editor
McCormick, Stephen
In the same journal
General Relativity and Gravitation
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 34 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf