Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Interactive Machine Learning of Musical Gesture
Luleå University of Technology, Department of Social Sciences, Technology and Arts, Music, Media and Theater.ORCID iD: 0000-0001-9685-4702
EAVI–Embodied Audiovisual Interaction, Goldsmiths, University of London, New Cross, London, SE14 6NW, UK.
2021 (English)In: Handbook of Artificial Intelligence for Music: Foundations, Advanced Approaches, and Developments for Creativity / [ed] Miranda, Eduardo Reck, Springer Nature, 2021, p. 771-798Chapter in book (Refereed)
Place, publisher, year, edition, pages
Springer Nature, 2021. p. 771-798
National Category
Music
Research subject
Musical Performance
Identifiers
URN: urn:nbn:se:ltu:diva-98312DOI: 10.1007/978-3-030-72116-9_27Scopus ID: 2-s2.0-85160498769OAI: oai:DiVA.org:ltu-98312DiVA, id: diva2:1767557
Note

ISBN för värdpublikation: 978-3-030-72115-2, 978-3-030-72118-3, 978-3-030-72116-9

Available from: 2023-06-14 Created: 2023-06-14 Last updated: 2023-06-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Visi, Federico Ghelli

Search in DiVA

By author/editor
Visi, Federico Ghelli
By organisation
Music, Media and Theater
Music

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 52 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf