Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fault Resilient Decentralized Multi-sensorial Fusion Based Pose Estimation for Autonomous Navigation Around Asteroid
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Signals and Systems.ORCID iD: 0000-0003-3530-1084
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Signals and Systems.ORCID iD: 0000-0003-3557-6782
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Signals and Systems.ORCID iD: 0000-0003-1437-1809
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Signals and Systems.ORCID iD: 0000-0003-0126-1897
2023 (English)In: International Journal of Control, Automation and Systems, ISSN 1598-6446, E-ISSN 2005-4092, Vol. 21, no 6, p. 2031-2042Article in journal (Refereed) Published
Abstract [en]

A decentralized multi-sensor fusion-based resilient pose estimation architecture for autonomous navigation of satellites around an asteroid is presented in this article. Navigation around an asteroid is challenging due to dynamic illumination conditions, which restricts the vision-based localization and is partially ineffective for a longer duration of the operation. Moreover, drift in sensor measurement and temporal sensor failure is often encountered in long-duration sustainable space missions. This is more so around a debris-prone region, where momentary obstruction leads to inaccurate sensor measurement for a temporary period of operation. In order to establish a resilient localization mechanism for satellites around an asteroid, the proposed framework embeds a unique automatic fault detection and isolation approach in a decentralized fusion formalism. Furthermore, a unified framework can operate autonomously during temporary and long-range inoperative periods. In the first stage, innovative fault detection is proposed, which operates based on the residual of a judiciously designed filter assembly. Secondly, a novel fault-resilient isolation fusion called the fault-resilient optimal information filter fusion (FR-OIF) technique is presented, enabling self-resiliency by embedding an inbuilt fault isolation mechanism. The proposed resilient asteroid navigation approach is demonstrated with a simulation study considering a satellite equipped with multiple onboard sensors such as an inertial measurement unit, star tracker, camera and 3D-Lidar in the proximity of the asteroid Ryugu. At the same time, its superiority is also demonstrated through a comparison with the centralized multi-sensorial fusion approach.

Place, publisher, year, edition, pages
Springer Nature, 2023. Vol. 21, no 6, p. 2031-2042
Keywords [en]
Asteroid navigation, decentralize fusion, fault resilient decentralized fusion, filter bank, maximum likelihood function, multi-sensor fusion
National Category
Control Engineering
Research subject
Robotics and Artificial Intelligence
Identifiers
URN: urn:nbn:se:ltu:diva-99119DOI: 10.1007/s12555-022-0528-3ISI: 001010828700026Scopus ID: 2-s2.0-85162254538OAI: oai:DiVA.org:ltu-99119DiVA, id: diva2:1779065
Funder
EU, Horizon 2020, 101003591 NEX-GEN SIMS
Note

Validerad;2023;Nivå 2;2023-07-03 (hanlid)

Available from: 2023-07-03 Created: 2023-07-03 Last updated: 2024-02-22Bibliographically approved
In thesis
1. Platform-Agnostic Resilient Decentralized Multi-Sensor Fusion for Pose Estimation
Open this publication in new window or tab >>Platform-Agnostic Resilient Decentralized Multi-Sensor Fusion for Pose Estimation
2024 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis presents an innovative decentralised sensor fusion framework with significant potential to improve navigation accuracy in autonomous vehicles. Its applicability is especially noteworthy in demanding scenarios, such as adverse weather conditions and intricate urban environments. In general, sensor fusion is a crucial method for integrating signals from various sources, extracting and integrating information from multiple inputs into a unified signal or data set. Frequently, sources of information are from sensors or devices designed for the perception and measurement of dynamic environmental changes. The collected data from diverse sensors undergoes processing through specialised algorithms, commonly referred to as "sensor fusion" or "data fusion" algorithms. This thesis describes sensor fusion's significance in processing data from multiple sources. It highlights the classification of fusion algorithms, demonstrating the versatility and applicability of sensor fusion across a range of redundant sensors. Moreover, various creative strategies for sensor fusion, including fault detection and isolation and methods for addressing non-Gaussian noise through smoothing filter techniques, are collectively introduced as part of a comprehensive navigation framework. The contributions of this thesis are summarized in the following. First, it introduces a decentralised two-layered fusion architecture for pose estimation, emphasising fault resilience. In a decentralised fashion, it utilises distributed nodes equipped with extended Kalman filters in the initial tier and optimal information filters in the subsequent tier to amalgamate pose data from multiple sensors. The design is named the Fault-Resilient Optimal Information Fusion (FR-OIF) architecture in this thesis, which guarantees reliable pose estimation, even in cases of sensor malfunctions. Secondly, this work proposes an Auto-encoder-based fault detection framework for a multi-sensorial distributed pose estimation. In this framework, auto-encoders are applied to detect anomalies in the raw signal measurements. At the same time, a fault-resilient optimal information filter (FROIF) approach is incorporated with the auto-encoder-based detection to improve estimation accuracy. The effectiveness of these methods is demonstrated through experimental results involving a micro aerial vehicle and is compared to a novel classical detection approach based on the Extended Kalman filter. Furthermore, it introduces an integrated multi-sensor fusion architecture enhanced by centralised Auto-encoder technology and an EKF framework. This approach effectively removes sensor data noise and anomalies, ensuring reliable data reconstruction, even when faced with time-dependent anomalies. The assessment of the framework's performance using actual sensor data collected from the onboard sensors of a micro aerial vehicle demonstrates its superiority compared to a centralised Extended Kalman filter without Auto-encoders. The next part of the thesis discusses the increasing need for resilient autonomy in complex space missions. It emphasises the challenges posed by interactions with non-cooperative objects and extreme environments, calling for advanced autonomy solutions.  Furthermore, this work introduces a decentralised multi-sensor fusion architecture for resilient satellite navigation around asteroids. It addresses challenges such as dynamic illumination, sensor drift, and momentary sensor failure. The approach includes fault detection and isolation methods, ensuring autonomous operation in adverse conditions. Finally, the last part of the thesis focuses on accurate localisation and deviation identification in multi-sensor fusion with Millimeter-Wave Radars. It presents a flexible, decentralised smoothing filter framework that effectively handles unwanted measurements and enhances Ego velocity estimation accuracy.  Overall, this thesis plays a significant role in advancing the field of decentralised sensor fusion, encompassing anomaly avoidance mechanisms, fault detection and isolation frameworks, and robust navigation algorithms applicable across a range of domains, covering everything from robotics to space exploration. In the initial section of this thesis, we delve into the backdrop, reasons behind the research, existing challenges, and the contributions made. Conversely, the subsequent section comprises the complete articles linked to the outlined contributions and a bibliography.

Place, publisher, year, edition, pages
Luleå: Luleå University of Technology, 2024. p. 184
Series
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757
National Category
Signal Processing
Research subject
Robotics and Artificial Intelligence
Identifiers
urn:nbn:se:ltu:diva-104362 (URN)978-91-8048-488-6 (ISBN)978-91-8048-489-3 (ISBN)
Presentation
2024-04-03, A1545, Luleå University of Technology, Luleå, 13:00 (English)
Opponent
Supervisors
Available from: 2024-02-22 Created: 2024-02-22 Last updated: 2024-03-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Mukherjee, MoumitaBanerjee, AvijitSatpute, Sumeet GajananNikolakopoulos, George

Search in DiVA

By author/editor
Mukherjee, MoumitaBanerjee, AvijitSatpute, Sumeet GajananNikolakopoulos, George
By organisation
Signals and Systems
In the same journal
International Journal of Control, Automation and Systems
Control Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 151 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf