System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Domain Adaptable Self-supervised Representation Learning on Remote Sensing Satellite Imagery
Chandigarh College of Engineering and Technology, Punjab University, Chandigarh, India.
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Embedded Internet Systems Lab.ORCID iD: 0000-0002-6903-7552
Chandigarh College of Engineering and Technology, Punjab University, Chandigarh, India.
Chandigarh College of Engineering and Technology, Punjab University, Chandigarh, India.
Show others and affiliations
2023 (English)In: IJCNN 2023 - International Joint Conference on Neural Networks, Conference Proceedings, Institute of Electrical and Electronics Engineers Inc. , 2023Conference paper, Published paper (Refereed)
Abstract [en]

This work presents a novel domain adaption paradigm for studying contrastive self-supervised representation learning and knowledge transfer using remote sensing satellite data. Major state-of-the-art remote sensing visual domain ef-forts primarily focus on fully supervised learning approaches that rely entirely on human annotations. On the other hand, human annotations in remote sensing satellite imagery are always subject to limited quantity due to high costs and domain expertise, making transfer learning a viable alternative. The proposed approach investigates the knowledge transfer of self-supervised representations across the distinct source and target data distributions in depth in the remote sensing data domain. In this arrangement, self-supervised contrastive learning- based pretraining is performed on the source dataset, and downstream tasks are performed on the target datasets in a round-robin fashion. Experiments are conducted on three publicly avail-able datasets, UC Merced Landuse (UCMD), SIRI-WHU, and MLRSNet, for different downstream classification tasks versus label efficiency. In self-supervised knowledge transfer, the pro-posed approach achieves state-of-the-art performance with label efficiency labels and outperforms a fully supervised setting. A more in-depth qualitative examination reveals consistent evidence for explainable representation learning. The source code and trained models are published on GitHub1.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers Inc. , 2023.
Series
Proceedings of the International Joint Conference on Neural Networks, ISSN 2161-4393, E-ISSN 2161-4407
Keywords [en]
contrastive learning, domain adaptation, remote sensing, representation learning, satellite image, self-supervised learning
National Category
Computer Sciences Signal Processing
Research subject
Machine Learning
Identifiers
URN: urn:nbn:se:ltu:diva-101307DOI: 10.1109/IJCNN54540.2023.10191249ISI: 001046198701085Scopus ID: 2-s2.0-85169612572ISBN: 978-1-6654-8868-6 (print)ISBN: 978-1-6654-8867-9 (electronic)OAI: oai:DiVA.org:ltu-101307DiVA, id: diva2:1796213
Conference
2023 International Joint Conference on Neural Networks, IJCNN 2023, Gold Coast, Australia, June 18-23, 2023
Available from: 2023-09-12 Created: 2023-09-12 Last updated: 2024-03-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Chhipa, Prakash ChandraLiwicki, Marcus

Search in DiVA

By author/editor
Chhipa, Prakash ChandraLiwicki, Marcus
By organisation
Embedded Internet Systems Lab
Computer SciencesSignal Processing

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 125 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf