Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
EEG-based mental workload estimation using deep BLSTM-LSTM network and evolutionary algorithm
Dept. of Computer Science and Engineering, Indian Institute of Technology Roorkee, India.ORCID iD: 0000-0002-6350-1019
Dept. of Computer Science and Engineering, Institute of Engineering & Managament, Kolkata, India.
Dept. of Computer Science and Engineering, Indian Institute of Technology Roorkee, India.
School of Electrical Sciences, Indian Institute of Technology Bhubaneswar, India.
2020 (English)In: Biomedical Signal Processing and Control, ISSN 1746-8094, E-ISSN 1746-8108, Vol. 60, article id 101989Article in journal (Refereed) Published
Place, publisher, year, edition, pages
Elsevier, 2020. Vol. 60, article id 101989
Identifiers
URN: urn:nbn:se:ltu:diva-101426DOI: 10.1016/j.bspc.2020.101989ISI: 000540302000035Scopus ID: 2-s2.0-85084697798OAI: oai:DiVA.org:ltu-101426DiVA, id: diva2:1799742
Available from: 2023-09-24 Created: 2023-09-24 Last updated: 2023-09-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Das Chakladar, Debashis

Search in DiVA

By author/editor
Das Chakladar, Debashis
In the same journal
Biomedical Signal Processing and Control

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 43 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf