Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Dataset with condition monitoring vibration data annotated with technical language, from paper machine industries in northern Sweden
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Embedded Internet Systems Lab.ORCID iD: 0000-0002-0188-9337
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Embedded Internet Systems Lab.ORCID iD: 0000-0001-5662-825x
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Embedded Internet Systems Lab.ORCID iD: 0000-0003-4029-6574
Svenska Kullagerfabriken.
Responsible organisation
2023 (English)Data set, Primary dataAlternative title
Dataset med tillståndsövervakningsvibrationsdata annoterat med tekniskt språk, från pappersmaskinsindustri i norra Sverige (Swedish)
Physical description [en]

Vibration data collected through accelerometers (SKF IMx-system with CMSS sensors)

Physical description [sv]

Vibrationsdata insamlad med accelerometrar (SKF IMx-system med CMSS-sensorer)

Abstract [en]

Labelled industry datasets are one of the most valuable assets in prognostics and health management (PHM) research. However, creating labelled industry datasets is both difficult and expensive, making publicly available industry datasets rare at best, in particular labelled datasets.Recent studies have showcased that industry annotations can be used to train artificial intelligence models directly on industry data ( https://doi.org/10.36001/ijphm.2022.v13i2.3137 , https://doi.org/10.36001/phmconf.2023.v15i1.3507 ), but while many industry datasets also contain text descriptions or logbooks in the form of annotations and maintenance work orders, few, if any, are publicly available.Therefore, we release a dataset consisting with annotated signal data from two large (80mx10mx10m) paper machines, from a Kraftliner production company in northern Sweden. The data consists of 21 090 pairs of signals and annotations from one year of production. The annotations are written in Swedish, by on-site Swedish experts, and the signals consist primarily of accelerometer vibration measurements from the two machines.The dataset is structured as a Pandas dataframe and serialized as a pickle (.pkl) file and a JSON (.json) file. The first column (‘id’) is the ID of the samples; the second column (‘Spectra’) are the fast Fourier transform and envelope-transformed vibration signals; the third column (‘Notes’) are the associated annotations, mapped so that each annotation is associated with all signals from ten days before the annotation date, up to the annotation date; and finally the fourth column (‘Embeddings’) are pre-computed embeddings using Swedish SentenceBERT. Each row corresponds to a vibration measurement sample, though there is no distinction in this data between which sensor or machine part each measurement is from.

Abstract [sv]

Industridataset med labels är bland de mest värdefulla tillgångarna att tillgå inom prognostik- och tillståndsövervaknings-forskning. Att tillverka labellade dataset är både svårt och dyrt, vilket medför att allmänt tillgängliga industridataset är sällsynta, särskilt de med labels. Studier har dock visat att industriannoteringar kan användas för att träna AI-modeller direkt på industridata ( https://doi.org/10.36001/ijphm.2022.v13i2.3137 , https://doi.org/10.36001/phmconf.2023.v15i1.3507 ), men trots att många industridataset innehåller de nödvändiga texterna så är få, om ens några, sådana dataset allmänt tillgängliga.Därför ger vi ut ett dataset innehållandes annoterade signaldata från två stora (80x10x10m) pappersmaskiner från ett pappersbruk i norra Sverige. Datan består av 21 090 par av signaler och annoteringar från ett års produktion. Annoteringarna är skrivna på svenska av experter på plats, och signalerna består huvudsakligen av accelerometervibrationsmätningar från de två maskinerna.Datasetet består av ett års annoterade vibrationsensormätningar från två pappersmaskiner, strukturerade som en Pandas dataframe och serialiserade som en pickle-fil (.pkl) samt en JSON-fil (.json). Den första kolumnen (’id’) är ID per sample; den andra kolumnen (’Spectra’) är fast-Fourier-transformerade och envelope-transformerade vibrationssignaler; den tredje kolumnen (’Notes’) är de tillhörande annoteringarna, kartlagda så att varje annotering är kopplad till alla signaler från tio dagar före annoteringsdatumet upp till annoteringsdatumet; och slutligen den fjärde kolumnen (’Embeddings’) är förberäknade text-representationer från Swedish SentenceBERT. Varje rad motsvarar ett vibrationsmätningsprov, även om det inte finns någon åtskillnad i denna data mellan vilken sensor och maskindel varje mätning kommer från.

Place, publisher, year
Svensk nationell datatjänst (SND) , 2023.
Keywords [en]
Paper industry, Condition monitoring, Language technology, Signal processing, Fault detection, Natural language processing, Technical language processing, Technical language supervision, Natural language supervision, Fault diagnosis, Intelligent fault diagnosis, Prognostics and health management
National Category
Language Technology (Computational Linguistics) Computer Sciences
Research subject
Machine Learning; Cyber-Physical Systems
Identifiers
URN: urn:nbn:se:ltu:diva-103146DOI: 10.5878/z34p-qj52OAI: oai:DiVA.org:ltu-103146DiVA, id: diva2:1816144
Funder
Vinnova, 2019-02533
Note

CC BY-NC 4.0 

Available from: 2023-12-01 Created: 2023-12-01 Last updated: 2024-04-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Löwenmark, KarlSandin, FredrikLiwicki, Marcus

Search in DiVA

By author/editor
Löwenmark, KarlSandin, FredrikLiwicki, Marcus
By organisation
Embedded Internet Systems Lab
Language Technology (Computational Linguistics)Computer Sciences
Löwenmark, K., Taal, C., Vurgaft, A., Nivre, J., Liwicki, M. & Sandin, F. (2023). Labelling of Annotated Condition Monitoring Data Through Technical Language Processing. In: Chetan S. Kulkarni; Indranil Roychoudhury (Ed.), Proceedings of the Annual Conference of the PHM Society 2023: . Paper presented at 15th Annual Conference of the Prognostics and health Management Society, Salt Lake City, Utah, USA, October 28 - November 2, 2023. The Prognostics and Health Management SocietyLöwenmark, K., Taal, C., Schnabel, S., Liwicki, M. & Sandin, F. (2022). Technical Language Supervision for Intelligent Fault Diagnosis in Process Industry. International Journal of Prognostics and Health Management, 13(2)Löwenmark, K. (2023). Technical Language Supervision for Intelligent Fault Diagnosis. (Licentiate dissertation). Luleå: Luleå University of TechnologyLöwenmark, K., Taal, C., Nivre, J., Liwicki, M. & Sandin, F. (2022). Processing of Condition Monitoring Annotations with BERT and Technical Language Substitution: A Case Study. In: Phuc Do, Gabriel Michau, Cordelia Ezhilarasu (Ed.), Proceedings of the 7th European Conference of the Prognostics and Health Management Society 2022: . Paper presented at 7th European Conference of the Prognostics and Health Management Society 2022 (PHME22), July 6-8 2022, Turin, Italy (pp. 306-314). PHM Society, 7

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 239 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf