Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Belief Scene Graphs: Expanding Partial Scenes with Objects through Computation of Expectation
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Signals and Systems.ORCID iD: 0000-0001-8132-4178
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Signals and Systems.ORCID iD: 0000-0002-0020-6020
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Signals and Systems.ORCID iD: 0000-0003-3794-0306
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Signals and Systems.ORCID iD: 0000-0001-8870-6718
Show others and affiliations
2024 (English)Conference paper, Published paper (Refereed)
Abstract [en]

In this article, we propose the novel concept of Belief Scene Graphs, which are utility-driven extensions of partial 3D scene graphs, that enable efficient high-level task planning with partial information. We propose a graph-based learning methodology for the computation of belief (also referred to as expectation) on any given 3D scene graph, which is then used to strategically add new nodes (referred to as blind nodes) that are relevant to a robotic mission. We propose the method of Computation of Expectation based on Correlation Information (CECI), to reasonably approximate real Belief/Expectation, by learning histograms from available training data. A novel Graph Convolutional Neural Network (GCN) model is developed, to learn CECI from a repository of 3D scene graphs. As no database of 3D scene graphs exists for the training of the novel CECI model, we present a novel methodology for generating a 3D scene graph dataset based on semantically annotated real-life 3D spaces. The generated dataset is then utilized to train the proposed CECI model and for extensive validation of the proposed method. We establish the novel concept of \textit{Belief Scene Graphs} (BSG), as a core component to integrate expectations into abstract representations. This new concept is an evolution of the classical 3D scene graph concept and aims to enable high-level reasoning for task planning and optimization of a variety of robotics missions. The efficacy of the overall framework has been evaluated in an object search scenario, and has also been tested in a real-life experiment to emulate human common sense of unseen-objects. 

For a video of the article, showcasing the experimental demonstration, please refer to the following link: \url{https://youtu.be/hsGlSCa12iY}

Place, publisher, year, edition, pages
IEEE, 2024. p. 9441-9447
National Category
Computer graphics and computer vision
Research subject
Robotics and Artificial Intelligence
Identifiers
URN: urn:nbn:se:ltu:diva-105326DOI: 10.1109/ICRA57147.2024.10611352Scopus ID: 2-s2.0-85202433848OAI: oai:DiVA.org:ltu-105326DiVA, id: diva2:1855833
Conference
The 2024 IEEE International Conference on Robotics and Automation (ICRA2024), Yokohama, Japan, May 13-17, 2024
Note

Funder: European Union’s HorizonEurope Research and Innovation Programme (101119774 SPEAR);

ISBN for host publication: 979-8-3503-8457-4;

Available from: 2024-05-03 Created: 2024-05-03 Last updated: 2025-02-07Bibliographically approved
In thesis
1. Towards human-inspired perception in robotic systems by leveraging computational methods for semantic understanding
Open this publication in new window or tab >>Towards human-inspired perception in robotic systems by leveraging computational methods for semantic understanding
2024 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis presents a recollection of developments and results towards the research of human-like semantic understanding of the environment for robotics systems. Achieving a level of understanding in robots comparable to humans has proven to be a significant challenge in robotics, although modern sensors like stereo cameras and neuromorphic cameras enable robots to perceive the world in a manner akin to human senses, extracting and interpreting semantic information proves to be significantly inefficient by comparison. This thesis explores different aspects of the machine vision field to level computational methods in order to address real-life challenges for the task of semantic scene understanding in both everyday environments as well as challenging unstructured environments. 

The works included in this thesis present key contributions towards three main research directions. The first direction establishes novel perception algorithms for object detection and localization, aimed at real-life deployments in onboard mobile devices for %perceptually degraded unstructured environments. Along this direction, the contributions focus on the development of robust detection pipelines as well as fusion strategies for different sensor modalities including stereo cameras, neuromorphic cameras, and LiDARs. 

The second research direction establishes a computational method for levering semantic information into meaningful knowledge representations to enable human-inspired behaviors for the task of traversability estimation for reactive navigation. The contribution presents a novel decay function for traversability soft image generation based on exponential decay, by fusing semantic and geometric information to obtain density images that represent the pixel-wise traversability of the scene. Additionally, it presents a novel Encoder-Decoder lightweight network architecture for coarse semantic segmentation of terrain, integrated with a memory module based on a dynamic certainty filter.

Finally, the third research direction establishes the novel concept of Belief Scene Graphs, which are utility-driven extensions of partial 3D scene graphs, that enable efficient high-level task planning with partial information.The research thus presents an approach to meaningfully incorporate unobserved objects as nodes into an incomplete 3D scene graph using the proposed method Computation of Expectation based on Correlation Information (CECI), to reasonably approximate the probability distribution of the scene by learning histograms from available training data. Extensive simulations and real-life experimental setups support the results and assumptions presented in this work.

Place, publisher, year, edition, pages
Luleå: Luleå University of Technology, 2024
Series
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757
National Category
Computer graphics and computer vision
Research subject
Robotics and Artificial Intelligence
Identifiers
urn:nbn:se:ltu:diva-105329 (URN)978-91-8048-568-5 (ISBN)978-91-8048-569-2 (ISBN)
Presentation
2024-06-17, A117, Luleå University of Technology, Luleå, 09:00 (English)
Opponent
Supervisors
Available from: 2024-05-03 Created: 2024-05-03 Last updated: 2025-02-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Saucedo, Mario Alberto ValdesPatel, AkashSaradagi, AkshitKanellakis, ChristoforosNikolakopoulos, George

Search in DiVA

By author/editor
Saucedo, Mario Alberto ValdesPatel, AkashSaradagi, AkshitKanellakis, ChristoforosNikolakopoulos, George
By organisation
Signals and Systems
Computer graphics and computer vision

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 214 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf