Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optimisation of Muon Tomography Scanners for Border Control Using TomOpt
Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; MODE Collaboration.ORCID iD: 0009-0007-5997-2612
Departamento de Física and ICTEA, Universidad de Oviedo, 33007 Oviedo, Spain.ORCID iD: 0009-0001-8807-8819
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Embedded Internet Systems Lab. MODE Collaboration; Istituto Nazionale di Fisica Nucleare, Sezione di Padova, 35131 Padova, Italy.ORCID iD: 0000-0002-1659-8727
Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; MODE Collaboration.ORCID iD: 0000-0001-9640-8294
Show others and affiliations
2025 (English)In: Particles, E-ISSN 2571-712X, Vol. 8, no 2, article id 53Article in journal (Refereed) Published
Abstract [en]

The TomOpt software package is designed to optimise the geometric configuration and the specifications of detectors intended for muon scattering tomography, an imaging technique exploiting cosmic-ray muons. The software employs an end-to-end differentiable pipeline that models the interactions of muons with detectors and scanned volumes, infers properties of the scanned materials, and performs an optimisation cycle minimising a user-defined loss function. This article presents the implementation of a case study related to cargo scanning applications in the context of homeland security.

Place, publisher, year, edition, pages
MDPI, 2025. Vol. 8, no 2, article id 53
Keywords [en]
muon, scattering tomography, muography, differentiable programming, detector design, optimisation
National Category
Software Engineering
Research subject
Machine Learning
Identifiers
URN: urn:nbn:se:ltu:diva-112579DOI: 10.3390/particles8020053OAI: oai:DiVA.org:ltu-112579DiVA, id: diva2:1956076
Funder
EU, Horizon 2020, 101021812
Note

Godkänd;2025;Nivå 0;2025-05-05 (u8);

Funder: Fonds de la Recherche Scientifique (T.0099.19, J.0070.2); MCIN (RYC2021-033305-I); European Union NextGenerationEU/PRTR (RYC2021-033305-I);

Full text license: CC BY

Available from: 2025-05-05 Created: 2025-05-05 Last updated: 2025-05-05Bibliographically approved

Open Access in DiVA

fulltext(1548 kB)19 downloads
File information
File name FULLTEXT01.pdfFile size 1548 kBChecksum SHA-512
fda662cfcafc0fd775b7d8982e40306aa4c994ee697888aba9c29f5f408d147b0e70ced4aa48aaf29ccc5fcbb586c4612edf00eaaf1949ca71452786548fb0c4
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records

Dorigo, Tommaso

Search in DiVA

By author/editor
Zaher, ZahraaAlvarez, SamuelDorigo, TommasoGiammanco, AndreaLagrange, MaximeStrong, Giles C.Vischia, PietroZaraket, Haitham
By organisation
Embedded Internet Systems Lab
Software Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 20 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 151 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf