Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Walsh-Marcinkiewicz means and Hardy spaces
College of Nyiregyhaza, Institute of Mathematics and Computer Science, Nyiregyhaza.
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
2014 (English)In: Central European Journal of Mathematics, ISSN 1895-1074, E-ISSN 1644-3616, Vol. 12, no 8, p. 1214-1228Article in journal (Refereed) Published
Abstract [en]

The main aim of this paper is to investigate the Walsh-Marcinkiewicz means on the Hardy space Hp, when 0 < p < 2/3. We define a weighted maximal operator of Walsh-Marcinkiewicz means and establish some of its properties. With its aid we provide a necessary and sufficient condition for convergence of the Walsh-Marcinkiewicz means in terms of modulus of continuity on the Hardy space Hp, and prove a strong convergence theorem for the Walsh-Marcinkiewicz means

Place, publisher, year, edition, pages
2014. Vol. 12, no 8, p. 1214-1228
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:ltu:diva-3343DOI: 10.2478/s11533-014-0406-1Local ID: 127d4f64-7906-404b-a4b0-22f610ae5f11OAI: oai:DiVA.org:ltu-3343DiVA: diva2:976201
Note
Validerad; 2014; 20140415 (andbra)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2017-11-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Tephnadze, George
By organisation
Mathematical Science
In the same journal
Central European Journal of Mathematics
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf