Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Operations in A-theory
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
Fachbereich Mathematik/Informatik, Universität Osnabrück.
2002 (English)In: Journal of Pure and Applied Algebra, ISSN 0022-4049, E-ISSN 1873-1376, Vol. 174, no 3, p. 263-301Article in journal (Refereed) Published
Abstract [en]

A construction for Segal operations for K-theory of categories with cofibrations, weak equivalences and a biexact pairing is given and coherence properties of the operations are studied. The model for K-theory, which is used, allows coherence to be studied by means of (symmetric) monoidal functors. In the case of Waldhausen A-theory it is shown how to recover the operations used in Waldhausen (Lecture Notes in Mathematics, Vol. 967, Springer, Berlin, 1982, pp. 390-409) for the A-theory Kahn-Priddy theorem. The total Segal operation for A-theory, which assembles exterior power operations, is shown to carry a natural infinite loop map structure. The basic input is the un-delooped model for K-theory, which has been developed from a construction by Grayson and Gillet for exact categories in Gunnarsson et al. (J. Pure Appl. Algebra 79 (1992) 255), and Grayson's setup for operations in Grayson (K-theory (1989) 247). The relevant material from these sources is recollected followed by observations on equivariant objects and pairings. Grayson's conditions are then translated to the context of categories with cofibrations and weak equivalences. The power operations are shown to be well behaved w.r.t. suspension and are extended to algebraic K-theory of spaces. Staying close with the philosophy of Waldhausen (1982) Waldhausen's maps are found. The Kahn-Priddy theorem follows from splitting the "free part" off the equivariant theory. The treatment of coherence of the total operation in A-theory involves results from Laplaza (Lecture Notes in Mathematics, Vol. 281, Springer, Berlin, 1972, pp. 29-65) and restriction to spherical objects in the source of the operation.

Place, publisher, year, edition, pages
2002. Vol. 174, no 3, p. 263-301
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:ltu:diva-3458DOI: 10.1016/S0022-4049(02)00049-XISI: 000178365200004Scopus ID: 2-s2.0-0037168379Local ID: 148be510-abbe-11db-aeba-000ea68e967bOAI: oai:DiVA.org:ltu-3458DiVA, id: diva2:976316
Note

Validerad; 2002; 20070124 (kani)

Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2018-07-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Gunnarsson, Thomas

Search in DiVA

By author/editor
Gunnarsson, Thomas
By organisation
Mathematical Science
In the same journal
Journal of Pure and Applied Algebra
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 54 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf