Jump to content
Change search PrimeFaces.cw("Fieldset","widget_formSmash_search",{id:"formSmash:search",widgetVar:"widget_formSmash_search",toggleable:true,collapsed:true,toggleSpeed:500,behaviors:{toggle:function(ext) {PrimeFaces.ab({s:"formSmash:search",e:"toggle",f:"formSmash",p:"formSmash:search"},ext);}}});
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:upper:j_idt241",widgetVar:"citationDialog",width:"800",height:"600"});});
$(function(){PrimeFaces.cw("ImageSwitch","widget_formSmash_j_idt1681",{id:"formSmash:j_idt1681",widgetVar:"widget_formSmash_j_idt1681",fx:"fade",speed:500,timeout:8000},"imageswitch");});
#### Open Access in DiVA

No full text in DiVA
#### Other links

Publisher's full textScopus
#### Authority records

Gunnarsson, Thomas
#### Search in DiVA

##### By author/editor

Gunnarsson, Thomas
##### By organisation

Mathematical Science
##### In the same journal

Journal of Pure and Applied Algebra
On the subject

Mathematical Analysis
#### Search outside of DiVA

GoogleGoogle ScholarfindCitings = function() {PrimeFaces.ab({s:"formSmash:j_idt1900",f:"formSmash",u:"formSmash:citings",pa:arguments[0]});};$(function() {findCitings();}); $(function(){PrimeFaces.cw('Chart','widget_formSmash_visits',{id:'formSmash:visits',type:'bar',responsive:true,data:[[3,1,6,16,3,1,1,2]],title:"Visits for this publication",axes:{xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}},yaxis: {label:"",min:0,max:20,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}}},series:[{label:'diva2:976316'}],ticks:["Oct -16","Nov -16","Feb -17","Apr -17","Jan -18","Aug -20","Apr -22","Mar -23"],orientation:"vertical",barMargin:6,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 33 hits
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:lower:j_idt2015",widgetVar:"citationDialog",width:"800",height:"600"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt202",{id:"formSmash:upper:j_idt202",widgetVar:"widget_formSmash_upper_j_idt202",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt209_j_idt212",{id:"formSmash:upper:j_idt209:j_idt212",widgetVar:"widget_formSmash_upper_j_idt209_j_idt212",target:"formSmash:upper:j_idt209:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Operations in A-theoryPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2002 (English)In: Journal of Pure and Applied Algebra, ISSN 0022-4049, E-ISSN 1873-1376, Vol. 174, no 3, p. 263-301Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2002. Vol. 174, no 3, p. 263-301
##### National Category

Mathematical Analysis
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:ltu:diva-3458DOI: 10.1016/S0022-4049(02)00049-XISI: 000178365200004Scopus ID: 2-s2.0-0037168379Local ID: 148be510-abbe-11db-aeba-000ea68e967bOAI: oai:DiVA.org:ltu-3458DiVA, id: diva2:976316
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1011",{id:"formSmash:j_idt1011",widgetVar:"widget_formSmash_j_idt1011",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1023",{id:"formSmash:j_idt1023",widgetVar:"widget_formSmash_j_idt1023",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1033",{id:"formSmash:j_idt1033",widgetVar:"widget_formSmash_j_idt1033",multiple:true});
##### Note

A construction for Segal operations for K-theory of categories with cofibrations, weak equivalences and a biexact pairing is given and coherence properties of the operations are studied. The model for K-theory, which is used, allows coherence to be studied by means of (symmetric) monoidal functors. In the case of Waldhausen A-theory it is shown how to recover the operations used in Waldhausen (Lecture Notes in Mathematics, Vol. 967, Springer, Berlin, 1982, pp. 390-409) for the A-theory Kahn-Priddy theorem. The total Segal operation for A-theory, which assembles exterior power operations, is shown to carry a natural infinite loop map structure. The basic input is the un-delooped model for K-theory, which has been developed from a construction by Grayson and Gillet for exact categories in Gunnarsson et al. (J. Pure Appl. Algebra 79 (1992) 255), and Grayson's setup for operations in Grayson (K-theory (1989) 247). The relevant material from these sources is recollected followed by observations on equivariant objects and pairings. Grayson's conditions are then translated to the context of categories with cofibrations and weak equivalences. The power operations are shown to be well behaved w.r.t. suspension and are extended to algebraic K-theory of spaces. Staying close with the philosophy of Waldhausen (1982) Waldhausen's maps are found. The Kahn-Priddy theorem follows from splitting the "free part" off the equivariant theory. The treatment of coherence of the total operation in A-theory involves results from Laplaza (Lecture Notes in Mathematics, Vol. 281, Springer, Berlin, 1972, pp. 29-65) and restriction to spherical objects in the source of the operation.

Validerad; 2002; 20070124 (kani)

Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2018-07-10Bibliographically approved
doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1929",{id:"formSmash:j_idt1929",widgetVar:"widget_formSmash_j_idt1929",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1995",{id:"formSmash:lower:j_idt1995",widgetVar:"widget_formSmash_lower_j_idt1995",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1996_j_idt1998",{id:"formSmash:lower:j_idt1996:j_idt1998",widgetVar:"widget_formSmash_lower_j_idt1996_j_idt1998",target:"formSmash:lower:j_idt1996:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});