Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Scattering matrices with finite phase shift and the inverse scattering problem
Luleå tekniska universitet.
1996 (English)In: Inverse Problems, ISSN 0266-5611, E-ISSN 1361-6420, Vol. 12, no 3, p. 295-307Article in journal (Refereed) Published
Abstract [en]

The inverse scattering problem for the Schrödinger operator on the half-axis is studied. it is shown that this problem can be solved for the scattering matrices with arbitrary finite phase shift on the real axis if one admits potentials with long-range oscillating tails at infinity. The solution of the problem is constructed with the help of the Gelfand-Levitan-Marchenko procedure. The inverse problem has no unique solution for the standared set of scattering data which includes the scattering matrix, energies of the bound states and corresponding normalizing constants. This fact is related to zeros of the spectral density on the real axis. It is proven that the inverse problem has a unique solution in the defined class of potentials if the zeros of the spectral density are added to the set of scattering data.

Place, publisher, year, edition, pages
1996. Vol. 12, no 3, p. 295-307
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:ltu:diva-4252DOI: 10.1088/0266-5611/12/3/009ISI: A1996UR35300009Scopus ID: 2-s2.0-0040483942Local ID: 22bbd5b0-dccb-11dd-bf31-000ea68e967bOAI: oai:DiVA.org:ltu-4252DiVA, id: diva2:977116
Note
Godkänd; 1996; 20090107 (andbra)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2018-07-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus
In the same journal
Inverse Problems
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 7 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf