Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Estimating computation times of data-intensive applications
Monash University, Melbourne, VIC.
Monash University, Melbourne, VIC.
2004 (English)In: IEEE Distributed Systems Online, ISSN 1541-4922, E-ISSN 1541-4922, Vol. 5, no 4Article in journal (Refereed) Published
Abstract [en]

We present a holistic approach to estimation that uses rough sets theory to determine a similarity template and then compute a runtime estimate using identified similar applications. We tested the technique in two real-life data-intensive applications: data mining and high-performance computing.

Place, publisher, year, edition, pages
2004. Vol. 5, no 4
Identifiers
URN: urn:nbn:se:ltu:diva-4311DOI: 10.1109/MDSO.2004.1301253Local ID: 23dc7530-d551-11dc-958e-000ea68e967bOAI: oai:DiVA.org:ltu-4311DiVA, id: diva2:977175
Note
Upprättat; 2004; 20080207 (cira)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2018-06-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Zaslavsky, Arkady

Search in DiVA

By author/editor
Zaslavsky, Arkady
In the same journal
IEEE Distributed Systems Online

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 11 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf