This paper aims to cast some new light on controlling chaos using the OGY- and the Zero-Spectral-Radius methods. In deriving those methods we use a generalized procedure differing from the usual ones. This procedure allows us to conveniently treat maps to be controlled bringing the orbit to both various saddles and to sources with both real and complex eigenvalues. We demonstrate the procedure and the subsequent control on a variety of maps. We evaluate the control by examining the basins of attraction of the relevant controlled systems graphically and in some cases analytically