Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fluctuations of eigenvalues of random normal matrices
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
Royal Institute of Technology, Department of Mathematics.
CALTECH, Department of Mathematics, Pasadena.
2011 (English)In: Duke mathematical journal, ISSN 0012-7094, E-ISSN 1547-7398, Vol. 159, no 1, p. 31-81Article in journal (Refereed) Published
Abstract [en]

In this article, we consider a fairly general potential in the plane and the corresponding Boltzmann-Gibbs distribution of eigenvalues of random normal matrices. As the order of the matrices tends to infinity, the eigenvalues condensate on a certain compact subset of the plane-the "droplet." We prove that fluctuations of linear statistics of eigenvalues of random normal matrices converge on compact subsets of the interior of the droplet to a Gaussian field, and we discuss various ramifications of this result.

Place, publisher, year, edition, pages
2011. Vol. 159, no 1, p. 31-81
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:ltu:diva-4825DOI: 10.1215/00127094-1384782ISI: 000292953900002Scopus ID: 2-s2.0-79960631427Local ID: 2d0db93c-72f1-4b14-938b-f942d986e3a3OAI: oai:DiVA.org:ltu-4825DiVA, id: diva2:977699
Note
Validerad; 2011; 20110815 (andbra)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2018-07-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Ameur, Yacin

Search in DiVA

By author/editor
Ameur, Yacin
By organisation
Mathematical Science
In the same journal
Duke mathematical journal
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 56 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf