In this article, the governing bending equations of thick laminated transversely isotropic rectangular plates are derived based on third-order shear deformation theory (TSDT). Using a new function, called the boundary layer function, the three coupled governing equations are converted to two decoupled equations. These equations are in terms of the deflection of the plate and the mentioned boundary layer function, which are written in invariant form. By solving the decoupled equations, a Levy-type analytical solution is presented for bending of a transversely isotropic plate. Finally, numerical results are presented for boundary layer phenomenon and its effects in TSDT. It is shown that all of the boundary layer effects in Mindlin—Reissner theory appear in this theory. However, it is shown that the intensity of the boundary layer effects in TSDT exceeds that of the Mindlin—Reissner theory.