We extend and unify several Hardy type inequalities to functions whose values are positive semi-definite operators. In particular, our methods lead to the operator versions of Hardy-Hilbert's and Godunova's inequalities. While classical Hardy type inequalities hold for parameter values p > 1, it is typical that the operator versions hold only for 1 < p ≤ 2, even for functions with values in 2 × 2 matrices.