Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Carlson type inequalities for finite sums and integrals on bounded intervals
Department of Mathematics, Uppsala University.
Institute of Mathematics and Informatics, Lajos Kossuth University.
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
2005 (English)In: Bulletin of the Australian Mathematical Society, ISSN 0004-9727, E-ISSN 1755-1633, Vol. 71, no 2, p. 275-284Article in journal (Refereed) Published
Abstract [en]

We investigate Carlson type inequalities for finite sums, that is, inequalities of the form ∑mk=1ak < C (∑mk=1ka1akr+1) μ(∑mk=1ka2akr+1)λ, to hold for some constant C independent of the finite, non-zero set a1,⋯,am of non-negative numbers. We find constants C which are strictly smaller than the sharp constants in the corresponding infinite series case. Moreover, corresponding results for integrals over bounded intervals are given and a case with any finite number of factors on the right-hand side is proved

Place, publisher, year, edition, pages
2005. Vol. 71, no 2, p. 275-284
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:ltu:diva-6695Local ID: 4f6b0770-7ee0-11db-8824-000ea68e967bOAI: oai:DiVA.org:ltu-6695DiVA, id: diva2:979581
Note
Validerad; 2005; 20061128 (evan)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2017-11-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Persson, Lars-Erik

Search in DiVA

By author/editor
Persson, Lars-Erik
By organisation
Mathematical Science
In the same journal
Bulletin of the Australian Mathematical Society
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 10 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf