Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the partial sums of Vilenkin-Fourier series
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
2014 (English)In: Journal of Contemporary Mathematical Analysis, ISSN 1068-3623, Vol. 49, no 1, p. 23-32Article in journal (Refereed) Published
Abstract [en]

The aim of this paper is to investigate weighted maximal operators of partial sums of Vilenkin-Fourier series. Also, the obtained results we use to prove approximation and strong convergence theorems on the martingale Hardy spaces Hp, when 0 < p ≤ 1.

Abstract [en]

The aim of this paper is to investigate weighted maximal operators of partial sums of Vilenkin-Fourier series. Also, the obtained results we use to prove approximation and strong convergence theorems on the martingale Hardy spaces H p , when 0 < p ≤ 1.

Place, publisher, year, edition, pages
2014. Vol. 49, no 1, p. 23-32
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:ltu:diva-10297DOI: 10.3103/S1068362314010038ISI: 000335329300003Scopus ID: 2-s2.0-84894524840Local ID: 9175f5bf-a326-4534-a147-6a51f629b473OAI: oai:DiVA.org:ltu-10297DiVA, id: diva2:983239
Note
Validerad; 2014; 20140225 (andbra)Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2018-07-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Tephnadze, George

Search in DiVA

By author/editor
Tephnadze, George
By organisation
Mathematical Science
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 8 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf