Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the Friedrichs inequality in a cube perforated periodically along the part of the boundary: Homogenization procedure
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
2009 (English)Report (Other academic)
Abstract [en]

This paper is devoted to the application of asymptotic analysisfor functions depending on small parameter which characterizes themicroinhomogeneous structure of the domain where the functions aredefined. We derive the Friedrichs inequality for functions set inthe three dimensional domain perforated periodically along apart of the boundary and prove the convergence of solutions of theoriginal problems to the solution of the respective homogenizedproblem in this domain.

Place, publisher, year, edition, pages
Luleå: Department of Mathematics, Luleå University of Technology , 2009. , p. 24
Series
Gula serien, ISSN 1400-4003 ; 2009:02
National Category
Mathematical Analysis
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:ltu:diva-21778Local ID: 0136de08-3d4f-4e77-9d59-6dec694e3ba5OAI: oai:DiVA.org:ltu-21778DiVA, id: diva2:994826
Note

Godkänd; 2009; 20120412 (andbra)

Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2018-02-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Koroleva, Yulia

Search in DiVA

By author/editor
Koroleva, Yulia
By organisation
Mathematical Science
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 41 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf