Ändra sökning
Avgränsa sökresultatet
1 - 18 av 18
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Asif, Muhammad
    et al.
    Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
    Li-Qun, Zhang
    Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
    Zeng, Qingchao
    Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.
    Atiq, Muhammad
    Department of Plant Pathology, University of Agriculture, Faisalabad 38000, Pakistan.
    Ahmad, Khalil
    School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
    Tariq, Aqil
    Department of Wildlife, Fisheries, and Aquaculture, College of Forest Resources, Mississippi State, University, MS 39762–9690, USA.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Blom, Jochen
    Bioinformatics and Systems Biology, Justus Liebig University, Giessen 35392, Germany.
    Fenske, Linda
    Bioinformatics and Systems Biology, Justus Liebig University, Giessen 35392, Germany.
    Alodaini, Hissah Abdulrahman
    Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
    Hatamleh, Ashraf Atef
    Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
    Comprehensive genomic analysis of Bacillus paralicheniformis strain BP9, pan-genomic and genetic basis of biocontrol mechanism2023Ingår i: Computational and Structural Biotechnology Journal, E-ISSN 2001-0370, Vol. 21, s. 4647-4662Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Many Bacillus species are essential antibacterial agents, but their antibiosis potential still needs to be elucidated to its full extent. Here, we isolated a soil bacterium, BP9, which has significant antibiosis activity against fungal and bacterial pathogens. BP9 improved the growth of wheat seedlings via active colonization and demonstrated effective biofilm and swarming activity. BP9 sequenced genome contains 4282 genes with a mean G-C content of 45.94% of the whole genome. A single copy concatenated 802 core genes of 28 genomes, and their calculated average nucleotide identity (ANI) discriminated the strain BP9 from Bacillus licheniformis and classified it as Bacillus paralicheniformis. Furthermore, a comparative pan-genome analysis of 40 B. paralicheniformis strains suggested that the genetic repertoire of BP9 belongs to open-type genome species. A comparative analysis of a pan-genome dataset using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cluster of Orthologous Gene groups (COG) revealed the diversity of secondary metabolic pathways, where BP9 distinguishes itself by exhibiting a greater prevalence of loci associated with the metabolism and transportation of organic and inorganic substances, carbohydrate and amino acid for effective inhabitation in diverse environments. The primary secondary metabolites and their genes involved in synthesizing bacillibactin, fencing, bacitracin, and lantibiotics were identified as acquired through a recent Horizontal gene transfer (HGT) event, which contributes to a significant part of the strain`s antimicrobial potential. Finally, we report some genes essential for plant-host interaction identified in BP9, which reduce spore germination and virulence of multiple fungal and bacterial species. The effective colonization, diverse predicted metabolic pathways and secondary metabolites (antibiotics) suggest testing the suitability of strain BP9 as a potential bio-preparation in agricultural fields.

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Azua-Bustos, Armando
    et al.
    Centro de Astrobiología (CSIC-INTA), Madrid, Spain. Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile.
    González-Silva, Carlos
    Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile.
    Fernández-Martínez, Miguel Ángel
    Centro de Astrobiología (CSIC-INTA), Madrid, Spain.
    Arenas-Fajardo, Cristián
    Atacama Biotech, Santiago, Chile.
    Fonseca, Ricardo
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    Martin-Torres, Javier
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik. Instituto Andaluz de Ciencias de la Tierra (UGR-CSIC), Armilla, Granada, Spain.
    Fernández-Sampedro, Maite
    Centro de Astrobiología (CSIC-INTA), Madrid, Spain.
    Fairén, Alberto G.
    Centro de Astrobiología (CSIC-INTA), Madrid, Spain. Department of Astronomy, Cornell University, Ithaca, NY, USA.
    Zorzano Mier, María-Paz
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    Aeolian transport of viable microbial life across the Atacama Desert, Chile: Implications for Mars2019Ingår i: Scientific Reports, E-ISSN 2045-2322, Vol. 9, artikel-id 11024Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Here we inspect whether microbial life may disperse using dust transported by wind in the Atacama Desert in northern Chile, a well-known Mars analog model. By setting a simple experiment across the hyperarid core of the Atacama we found that a number of viable bacteria and fungi are in fact able to traverse the driest and most UV irradiated desert on Earth unscathed using wind-transported dust, particularly in the later afternoon hours. This finding suggests that microbial life on Mars, extant or past, may have similarly benefited from aeolian transport to move across the planet and find suitable habitats to thrive and evolve.

  • 3.
    Chang, Young-Cheol
    et al.
    Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, Hokkaido 050–8585, Japan; Department of Sciences and Informatics, Course of Chemical and Biological Systems, Muroran Institute of Technology, 27–1 Mizumoto, Muroran, 050–8585, Japan.
    Venkateswar Reddy, M.
    Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, USA.
    Suzuki, Hinako
    Department of Sciences and Informatics, Course of Chemical and Biological Systems, Muroran Institute of Technology, 27–1 Mizumoto, Muroran, 050–8585, Japan.
    Terayama, Takumi
    Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, Hokkaido 050–8585, Japan.
    Mawatari, Yasuteru
    Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, Hokkaido 050–8585, Japan; Department of Sciences and Informatics, Course of Chemical and Biological Systems, Muroran Institute of Technology, 27–1 Mizumoto, Muroran, 050–8585, Japan.
    Seki, Chigusa
    Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, Hokkaido 050–8585, Japan; Department of Sciences and Informatics, Course of Chemical and Biological Systems, Muroran Institute of Technology, 27–1 Mizumoto, Muroran, 050–8585, Japan.
    Sarkar, Omprakash
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Characterization of Ralstonia insidiosa C1 isolated from Alpine regions: Capability in polyhydroxyalkanoates degradation and production2024Ingår i: Journal of Hazardous Materials, ISSN 0304-3894, E-ISSN 1873-3336, Vol. 471, artikel-id 134348Artikel i tidskrift (Refereegranskat)
  • 4.
    Gryndler, M.
    et al.
    Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, 40096, Ústí nad Labem, Czech Republic.
    Gryndlerová, H.
    Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, 14220, Prague 4, Czech Republic.
    Hujslová, M.
    Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, 14220, Prague 4, Czech Republic.
    Bystrianský, L.
    Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, 40096, Ústí nad Labem, Czech Republic.
    Malinská, H.
    Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, 40096, Ústí nad Labem, Czech Republic.
    Šimsa, Daniel
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Institute of Physics, v.v.i., Czech Academy of Sciences, 18221, Prague 8, Czech Republic.
    Hršelová, H.
    Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, 14220, Prague 4, Czech Republic.
    In vitro Evaluation of Biofilm Biomass Dynamics2021Ingår i: Microbiology (Mikrobiologija), ISSN 0026-2617, E-ISSN 1608-3237, Vol. 90, nr 5, s. 656-665Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Biofilms are dynamic structures constituted by microorganisms that grow and die, and understanding these processes may be crucial to control biofilm development in various environments. Assuming a generally accepted first order decay kinetics of biofilm mass in time, mean residence time can be calculated. Using the initial labeling of the biofilm by 13C stable isotope, we were able to determine the residence time of the carbon in physiologically active biofilms. Our data indicate that the residence time is strongly affected by nutrition and differs substantially between biofilms formed by different bacterial isolates. Moreover, the biofilm formed from mixed soil inocula showed almost the same carbon residence time as the biofilms formed from both soil inocula applied separately. This does not indicate the existence of dramatic incompatibility between members of two interacting microbial communities. In the situation when the established biofilm biomass undergoes continuous replacement by newly appearing cells, the complex biofilm admit reluctantly the newly arriving microorganisms as components of the existing community. Our study represents a new insight into the biofilm dynamics in vitro. 

  • 5.
    Jakhwal, Parul
    et al.
    Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland.
    Daneshvar, Ehsan
    Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland.
    Skalska, Kinga
    Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland.
    Matsakas, Leonidas
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Patel, Alok
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Park, Yuri
    Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, South Korea.
    Bhatnagar, Amit
    Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland.
    Nutrient removal and biomass production of marine microalgae cultured in recirculating aquaculture systems (RAS) water with low phosphate concentration2024Ingår i: Journal of Environmental Management, ISSN 0301-4797, E-ISSN 1095-8630, Vol. 358, artikel-id 120859Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This study was conducted to investigate the feasibility of microalgal biomass production and nutrient removal from recirculating aquaculture systems (RAS) water (RASW) with low phosphate concentration. For this purpose, Nannochloropsis oculata, Pavlova gyrans, Tetraselmis suecica, Phaeodactylum tricornutum, and their consortium were cultivated in RASW and RASW supplemented with vitamins (+V). Among them, N. oculata showed the maximum biomass production of 0.4 g/L in RASW. Vitamins supplementation significantly increased the growth of T. suecica from 0.16 g/L in RASW to 0.33 g/L in RASW + V. Additionally, T. suecica showed the highest nitrate (NO3–N) removal efficiency of 80.88 ± 2.08 % in RASW and 83.82 ± 2.08 % in RASW + V. Accordingly, T. suecica was selected for scaling up study of microalgal cultivation in RASW and RASW supplemented with nitrate (RASW + N) in 4-L airlift photobioreactors. Nitrate supplementation enhanced the growth of T. suecica up to 2.2-fold (day 15). The fatty acid nutritional indices in T. suecica cultivated in RASW and RASW + N showed optimal polyunsaturated fatty acids (PUFAs)/saturated fatty acid (SFAs), omega-6 fatty acid (n-6)/omega-3 fatty acid (n-3), indices of atherogenicity (IA), and thrombogenicity (IT)). Overall, the findings of this study revealed that despite low phosphate concentration, marine microalgae can grow in RASW and relatively reduce the concentration of nitrate. Furthermore, the microalgal biomass cultivated in RASW consisting of pigments and optimal fatty acid nutritional profile can be used as fish feed, thus contributing to a circular bioeconomy.

    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Jampala, Annie Modestra
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Bajracharya, Suman
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Matsakas, Leonidas
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Rova, Ulrika
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Christakopoulos, Paul
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Bioelectrochemical treatment of acid mine drainage: Microbiome synergy influences sulfidogenesis and acetogenesis2024Ingår i: Sustainable Chemistry for the Environment, E-ISSN 2949-8392, Vol. 6, artikel-id 100106Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Bioelectrochemical systems (BES) are emerging as potential technologies that can remediate acid mine drainage (AMD) by cathodic reduction of sulfates to metal sulfides. This study evaluated bioelectrochemical remediation of sulfate rich AMD at two applied cathode potentials; BES-1: −1.0 V and BES-2: −0.8 V. Sulfate reducing bacteria were selectively enriched to be used as biocatalyst in BES. Initially, lactate was fed as carbon source and switched to chemolithoautotrophy with only CO2-fed conditions. Both BESs were operated at 3±0.2 g/l of sulfate with synthetic AMD (SAMD) fed first, and gradually changed to 50% AMD from mining site with 50% SAMD. Sulfate reduction was relatively higher with BES-1: 82% than BES-2: 76% coupled with sulfidogenesis. Interestingly, acetogenesis (BES-1: 2.12±0.2 g/l, BES-2: 1.9±0.2 g/l) was also noticed with high reduction currents (BES-1&2: >-70 mA). Microbiome community analysis revealed the dominant presence of sulfate reducers, acetogens, syntrophic bacteria and Methanobacterium, probing microbial synergy aiding sulfate reduction. An added advantage was the iron-sulfide (FeS) particles formation on cathode, which might have contributed to increased reduction currents. This study reveals insights into microbial synergy for autotrophic sulfate reduction within mixed microbiome communities along with the impact of FeS particles as conducive facilitator for electron transfer in BES, thereby enhancing electrosynthetic acetate production.

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Jones, Dennis
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Träteknik. Department of Forestry and Biomaterials, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic.
    Kržišnik, Davor
    Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
    Hočevar, Miha
    Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
    Zagar, Andreja
    Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
    Humar, Miha
    Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
    Popescu, Carmen-Mihaela
    Petru Poni Institute of Macromolecular Chemistry of the Romanian Academy, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; Centre of Wood Science and Technology, Edinburgh Napier University, Edinburgh EH11 4EP, UK.
    Popescu, Maria-Cristina
    Petru Poni Institute of Macromolecular Chemistry of the Romanian Academy, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania.
    Brischke, Christian
    Wood Biology and Wood Products, University of Goettingen, Buesgenweg 4, D-37077 Goettingen, Germany.
    Nunes, Lina
    Structures Department, LNEC, National Laboratory for Civil Engineering, Av. do Brasil, 101, 1700-066 Lisbon, Portugal.
    Curling, Simon F.
    The Biocomposites Centre, Bangor University, Deiniol Road, Bangor LL57 2UW, UK.
    Ormondroyd, Graham
    The Biocomposites Centre, Bangor University, Deiniol Road, Bangor LL57 2UW, UK.
    Sandberg, Dick
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Träteknik. Department of Forestry and Biomaterials, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic.
    Evaluation of the effect of a combined chemical and thermal modification of wood though the use of bicine and tricine.2022Ingår i: Forests, ISSN 1999-4907, E-ISSN 1999-4907, Vol. 13, nr 6, artikel-id 834Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The effects of thermal modification of wood have been well established, particularly in terms of reductions in mechanical performance. In recent years, there has been an increase in studies related to the Maillard reaction. More commonly associated with food chemistry, it involves the reaction of amines and reducing sugars during cooking procedures. This study has attempted to combine the use of amines and thermal modification, with subsequent properties investigated for the treatment of spruce (Picea abies (L.) H. Karst) and beech (Fagus sylvatica L.). In this initial study, the combined effects of chemical treatments by tricine and bicine were investigated with thermal modification. Along with some preliminary data on mechanical properties, the modifications which appeared in the wood structure were evaluated by infrared spectroscopy and biological studies according to EN113 and EN117 methodologies. The hierarchal study interpretation of FTIR suggested interactions between the bicine or tricine and the wood, which was partly supported by the analysis of volatile organic compounds (VOC), though other tests were not as conclusive. The potential of the method warrants further consideration, which will be described.

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Jones, Mitchell P.
    et al.
    Polymer & Composite Engineering (PaCE) Group, Institute of Materials Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Straße 42 1090 Vienna, Austria.
    Bismarck, Alexander
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Polymer & Composite Engineering (PaCE) Group, Institute of Materials Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Straße 42 1090 Vienna, Austria.
    Mycomining: perspective on fungi as scavengers of scattered metal, mineral, and rare earth element resources2024Ingår i: RSC Sustainability, E-ISSN 2753-8125, Vol. 2, nr 5, s. 1350-1357Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Mining provides raw materials critical to our energy, agriculture, infrastructure, and technology but is associated with many environmental challenges. Resource recovery alternatives like urban mining rely on inconsistent supply streams and complicated disassembly and sorting, while extreme mining alternatives such as deep sea and space mining are potentially even less sustainable than traditional mining. This perspective investigates biological mining with emphasis on the potential of fungi for scavenging metals, minerals, and rare earth elements. “Mycomining” produces only biomass-based organic waste and can offer more versatile growth conditions than phytomining using hyperaccumulating plants including substrates ranging from soil, wood, water, and rock to living organisms and dark, space-restricted, or extreme i.e., pH levels, high salt, acidic, radioactive environments. This concept could represent a useful supplement to urban and phytomining to offset demand for traditional mining and is particularly viable when conventional mining may be inefficient or uneconomical i.e., with low-grade ores and sites unsuited to traditional mining for geographical, political, or social reasons.

    Ladda ner fulltext (pdf)
    fulltext
  • 9.
    Karageorgou, Dimitra
    et al.
    Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45100 Ioannina, Greece.
    Patel, Alok
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Rova, Ulrika
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Christakopoulos, Paul
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Katapodis, Petros
    Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45100 Ioannina, Greece.
    Matsakas, Leonidas
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Heterotrophic Cultivation of the Cyanobacterium Pseudanabaena sp. on Forest Biomass Hydrolysates toward Sustainable Biodiesel Production2022Ingår i: Microorganisms, E-ISSN 2076-2607, Vol. 10, nr 9, artikel-id 1756Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Environmental pollution, greenhouse gas emissions, depletion of fossil fuels, and a growing population have sparked a search for new and renewable energy sources such as biodiesel. The use of waste or residues as substrates for microbial growth can favor the implementation of a biorefinery concept with reduced environmental footprint. Cyanobacteria constitute microorganisms with enhanced ability to use industrial effluents, wastewaters, forest residues for growth, and concomitant production of added-value compounds. In this study, a recently isolated cyanobacterium strain of Pseudanabaena sp. was cultivated on hydrolysates from pretreated forest biomass (silver birch and Norway spruce), and the production of biodiesel-grade lipids was assessed. Optimizing carbon source concentration and the (C/N) carbon-to-nitrogen ratio resulted in 66.45% w/w lipid content when microalgae were grown on glucose, compared to 62.95% and 63.79% w/w when grown on spruce and birch hydrolysate, respectively. Importantly, the lipid profile was suitable for the production of high-quality biodiesel. The present study demonstrates how this new cyanobacterial strain could be used as a biofactory, converting residual resources into green biofuel.

  • 10.
    Krige, Adolf
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Semenec, Lucie
    Rova, Ulrika
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik. Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriell miljö- och processteknik.
    Christakopoulos, Paul
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik. Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriell miljö- och processteknik.
    Role of Glycosyltransferase in the increased malate production in G. sulfurreducens when using sonobioreactorManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Ultrasound has been shown to affect microbial cells by promoting or slowing their growth and increasing the production of some metabolites.

     Using an optimized a sonotrode to match the bottle frequency and compared it to measured results to verify the accuracy of the simulation. The measured pressure distribution spectrum presented the same overall trend as the simulated spectrum.

     However, the peaks were much less intense, likely due to non-linear events such as the collapse of cavitation bubbles.

    To test the application of the sonobioreactor in biological systems, two biotechnologically interesting microorganisms were assessed: an electroactive bacterium, Geobacter sulfurreducens. Sonication resulted in increased malate production by G. sulfurreducens, but no major effect on growth.

  • 11.
    Krupodorova, TA
    et al.
    Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine.
    Barshteyn, VYu
    Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine, 04123 Kyiv, Ukraine.
    Sekan, AS
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Träteknik.
    Review of the basic cultivation conditions influence on the growth of basidiomycetes2021Ingår i: Current Research in Environmental and Applied Mycology (Journal of Fungal Biology), ISSN 2229-2225, Vol. 11, nr 1, s. 494-531Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Recently, the significant economic and therapeutic potential of different fungi causes the intense cultivation of the prospective species. This review presents the analysis of the basic physicochemical conditions for fungi cultivation that have an influence on basidiomycetes’ mycelia or biomass growth options (maximal mycelial dry weight, maximal mycelial growth, maximal mycelial growth rate, mycelial density, colony diameter, etc.). Not only different species, but different strains of the same fungus require different cultivation conditions, the variability of nutrition media, temperature, pH, carbon and nitrogen sources. Several parameters optimal cultivation can be explained by the geographical and climatic factors. Analysis of literature data and the resulting conclusions will help a deeper understanding of the biological characteristics of fungi, their nutritional needs, optimal temperature and pH, and optimization of the production of fungal biomass. Comparison of the collected information on various fungal strains growth aimed to facilitate the further development and optimization in existing cultivation protocols. According to this, the maximum growth for biotechnological and industrial application is expected to be obtained. Also, the prolongation in safekeeping of viable fungal forms and the preservation of the fungi biodiversity for their re-introduction in nature is expected as one of the benefits after protocol optimization.

  • 12.
    Mondal, Sudip
    et al.
    Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, Maharashtra, India.
    Nagmote, Manjiri S.
    Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, Maharashtra, India.
    Kombe, Suraj V.
    Post Graduate Department of Microbiology, S. K. Porwal College of Arts and Science and Commerce, Kamptee, Maharashtra, India.
    Dutta, Barun K.
    Department of Chemistry and Chemical Engineering, Xiamen University, Xiamen, P.R. China.
    Lambat, Trimurti L.
    Department of Chemistry, Manoharbhai Patel College of Arts, Commerce and Science, Deori, India.
    Chouke, Prashant B.
    Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, Maharashtra, India.
    Mondal, Aniruddha
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Ecofriendly microorganism assisted fabrication of metal nanoparticles and their applications2022Ingår i: Biogenic Sustainable Nanotechnology: Trends and Progress / [ed] Raghvendra Pratap Singh; Ahmed Abdala; Alok R. Rai; Ratiram G. Chaudhary, Elsevier , 2022, s. 77-105Kapitel i bok, del av antologi (Övrigt vetenskapligt)
    Abstract [en]

    In recent years, nanobiotechnology has gained the immense interest of scientists due to its green, economical, and nontoxic approach. Nonetheless, these green methods are also able to produce nanoparticles (NPs) to a large extent with a high rate of success. The bacteria and fungi are the most commonly used microorganism that satisfied the challenges for the synthesis of NPs by conventional chemical methods. Several methods have been discussed in this chapter mainly covering Cu, Ag, and Au metal NPs, and some of their imperative applications. Moreover, extra- and intracellular methods for microbial NPs synthesis are discussed extensively.

  • 13.
    Patel, Alok
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Rova, Ulrika
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Christakopoulos, Paul
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Matsakas, Leonidas
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    From Yeast to Biotechnology2022Ingår i: Bioengineering, E-ISSN 2306-5354, Vol. 9, nr 12, artikel-id 751Artikel i tidskrift (Övrigt vetenskapligt)
    Ladda ner fulltext (pdf)
    fulltext
  • 14.
    Patel, Alok
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Rova, Ulrika
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Christakopoulos, Paul
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Matsakas, Leonidas
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Role of Oleaginous Microorganisms in the Field of Renewable Energy2022Ingår i: Energies, E-ISSN 1996-1073, Vol. 15, nr 16, artikel-id 5984Artikel i tidskrift (Övrigt vetenskapligt)
  • 15.
    Richardson, Matthew
    et al.
    Mittuniversitetet, Institutionen för naturvetenskap.
    de Bruijn, Robert
    Mittuniversitetet, Institutionen för naturvetenskap.
    Holmberg, Hans-Christer
    Mittuniversitetet, Institutionen för hälsovetenskap.
    Björklund, Glenn
    Mittuniversitetet, Institutionen för naturvetenskap.
    Haughey, Helena
    Mittuniversitetet, Institutionen för naturvetenskap.
    Schagatay, Erika
    Mittuniversitetet, Institutionen för naturvetenskap.
    Increase of hemoglobin concentration after maximal apneas in divers, skiers and untrained humans2005Ingår i: Canadian Journal of Applied Physiology, ISSN 1066-7814, E-ISSN 1543-2718, Vol. 30, nr 3, s. 276-281Artikel i tidskrift (Refereegranskat)
  • 16.
    Sarkar, Omprakash
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Rova, Ulrika
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Christakopoulos, Paul
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Matsakas, Leonidas
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Continuous biohydrogen and volatile fatty acids production from cheese whey in a tubular biofilm reactor: Substrate flow rate variations and microbial dynamics2024Ingår i: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 59, s. 1305-1316Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Three tubular bioreactors with a varied substrate flow rate of (2 mL/min, 5 mL/min, and 8 mL/min) were examined for 75 days. At 8 mL/min flow rate, the biohydrogen evolution was higher (3.88 mL H2/h), while its conversion efficiency was lower compared to 5 and 2 mL/min flow rate. The formation of volatile fatty acids and ammonium was also influenced by substrate flow rates. The volatile fatty acids production was slightly higher at 2 mL/min (12.74 ± 2.42 gCOD/L) and 5 mL/min (18.09 ± 2.01 gCOD/L) while, decreasing at 8 mL/min (11.85 ± 0.78 gCOD/L). Substrate flow rate significantly affected the pattern and composition of volatile fatty acids showing higher acetic acid, butyric and propionic acid production of 4.72 ± 1.46 gCOD/L (2 mL/min) 10.41 ± 0.91 gCOD/L (5 mL/min) and 1.78 ± 0.13 gCOD/L (5 mL/min). Continuous substrate input maintained the pH in the reactor due to replacement with fresh substrate, thereby controlling feedback inhibition and boosting metabolite production. Hydrogen-producing Firmicutes on the biofilm confirmed the pivotal role of the microbial community's significant contribution to converting waste to bioenergy. Overall, the present results support the use of a continuous operation mode for large-scale biohydrogen production. However, to ensure the efficacy of the system using waste or wastewater, low substrate flow rates are recommended.

    Ladda ner fulltext (pdf)
    fulltext
  • 17.
    Sarkar, Omprakash
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Rova, Ulrika
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Christakopoulos, Paul
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Matsakas, Leonidas
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Effect of metals on the regulation of acidogenic metabolism enhancing biohydrogen and carboxylic acids production from brewery spent grains: Microbial dynamics and biochemical analysis2022Ingår i: Engineering in Life Sciences, ISSN 1618-0240, E-ISSN 1618-2863, Vol. 22, nr 10, s. 650-661Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The present study reports the mixed culture acidogenic production of biohydrogen and carboxylic acids (CA) from brewery spent grains (BSG) in the presence of high concentrations of cobalt, iron, nickel, and zinc. The metals enhanced biohydrogen output by 2.39 times along with CA biosynthesis by 1.73 times. Cobalt and iron promoted the acetate and butyrate pathways, leading to the accumulation of 5.14 gCOD/L of acetic and 11.36 gCOD/L of butyric acid. The production of solvents (ethanol + butanol) was higher with zinc (4.68 gCOD/L) and cobalt (4.45 gCOD/L). A combination of all four metals further enhanced CA accumulation to 42.98 gCOD/L, thus surpassing the benefits accrued from supplementation with individual metals. Additionally, 0.36 and 0.31 mol green ammonium were obtained from protein-rich brewery spent grain upon supplementation with iron and cobalt, respectively. Metagenomic analysis revealed the high relative abundance of Firmicutes (>90%), of which 85.02% were Clostridium, in mixed metal-containing reactors. Finally, a significant correlation of dehydrogenase activity with CA and biohydrogen evolution was observed upon metal addition.

  • 18.
    Sato, Trey K.
    et al.
    DOE Great Lakes Bioenergy Research Center, University of Wisconsin, United States.
    Liu, Tongjun
    DOE Great Lakes Bioenergy Research Center, Michigan State University, United States; Shandong Polytechnic University, China.
    Parreiras, Lucas S.
    DOE Great Lakes Bioenergy Research Center, University of Wisconsin, United States.
    Williams, Daniel L.
    DOE Great Lakes Bioenergy Research Center, Michigan State University, United States; Department of Chemical Engineering and Materials Science, Michigan State University, United States.
    Wohlbach, Dana J.
    DOE Great Lakes Bioenergy Research Center, University of Wisconsin, United States; Department of Genetics, University of Wisconsin, United States; Department of Biology, Dickinson College, United States.
    Bice, Benjamin D.
    DOE Great Lakes Bioenergy Research Center, University of Wisconsin, United States.
    Ong, Irene M.
    DOE Great Lakes Bioenergy Research Center, University of Wisconsin, United States.
    Breuer, Rebecca J.
    DOE Great Lakes Bioenergy Research Center, University of Wisconsin, United States.
    Qin, Li
    DOE Great Lakes Bioenergy Research Center, University of Wisconsin, United States.
    Busalacchi, Donald
    DOE Great Lakes Bioenergy Research Center, University of Wisconsin, United States.
    Deshpande, Shweta
    U.S. Department of Energy Joint Genome Institute, United States.
    Daum, Chris
    U.S. Department of Energy Joint Genome Institute, United States.
    Gasch, Audrey P.
    DOE Great Lakes Bioenergy Research Center, University of Wisconsin, United States; Department of Genetics, University of Wisconsin, United States.
    Hodge, David B.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriell miljö- och processteknik. DOE Great Lakes Bioenergy Research Center, Michigan State University, United States; Department of Chemical Engineering and Materials Science, Michigan State University, United States; Department of Biosystems and Agricultural Engineering, Michigan State University, United States.
    Harnessing genetic diversity in saccharomyces cerevisiae for fermentation of xylose in hydrolysates of alkaline hydrogen peroxide-pretreated biomass2014Ingår i: Applied and Environmental Microbiology, ISSN 0099-2240, E-ISSN 1098-5336, Vol. 80, nr 2, s. 540-554Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The fermentation of lignocellulose-derived sugars, particularly xylose, into ethanol by the yeast Saccharomyces cerevisiae is known to be inhibited by compounds produced during feedstock pretreatment. We devised a strategy that combined chemical profiling of pretreated feedstocks, high-throughput phenotyping of genetically diverse S. cerevisiae strains isolated from a range of ecological niches, and directed engineering and evolution against identified inhibitors to produce strains with improved fermentation properties. We identified and quantified for the first time the major inhibitory compounds in alkaline hydrogen peroxide (AHP)-pretreated lignocellulosic hydrolysates, including Na+, acetate, and p-coumaric (pCA) and ferulic (FA) acids. By phenotyping these yeast strains for their abilities to grow in the presence of these AHP inhibitors, one heterozygous diploid strain tolerant to all four inhibitors was selected, engineered for xylose metabolism, and then allowed to evolve on xylose with increasing amounts of pCA and FA. After only 149 generations, one evolved isolate, GLBRCY87, exhibited faster xylose uptake rates in both laboratory media and AHP switchgrass hydrolysate than its ancestral GLBRCY73 strain and completely converted 115 g/liter of total sugars in undetoxified AHP hydrolysate into more than 40 g/liter ethanol. Strikingly, genome sequencing revealed that during the evolution from GLBRCY73, the GLBRCY87 strain acquired the conversion of heterozygous to homozygous alleles in chromosome VII and amplification of chromosome XIV. Our approach highlights that simultaneous selection on xylose and pCA or FA with a wild S. cerevisiae strain containing inherent tolerance to AHP pretreatment inhibitors has potential for rapid evolution of robust properties in lignocellulosic biofuel production.

1 - 18 av 18
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf