Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Nellros, Frida
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Signals and Systems.
    Thurley, Matthew
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Signals and Systems.
    Jonsson, Håkan
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Computer Science.
    Andersson, Charlotte
    LKAB.
    Forsmo, Seija
    LKAB.
    Automated measurement of sintering degree in optical microscopy through image analysis of particle joins2015In: Pattern Recognition, ISSN 0031-3203, E-ISSN 1873-5142, Vol. 48, no 11, p. 3451-3465Article in journal (Refereed)
    Abstract [en]

    In general terms, sintering describes the bonding of particles into a more coherent structure, where joins form between packed particles, usually as a result of heating. Characterization of sintering is an important topic in the fields of metallurgy, steel, iron ore pellets, ceramics, and snow for understanding material properties and material strength. Characterization using image analysis has been applied in a number of these fields but is either semi-automatic, requiring human interaction in the analysis, or based on statistical sampling and stereology to characterize the sample. This paper presents a novel fully automatic image analysis algorithm to analyze and determine the degree of sintering based on analysis of the particle joins and structure. Quantitative image analysis of the sintering degree is demonstrated for samples of iron ore pellets but could be readily applied to other packed particle materials. Microscope images of polished cross-sections of iron ore pellets have been imaged in their entirety and automated analysis of hundreds of images has been performed. Joins between particles have been identified based on morphological image processing and features have been calculated based on the geometric properties and curvature of these joins. The features have been analyzed and determined to hold discriminative power by displaying properties consistent with sintering theory and results from traditional pellet diameter measurements on the heated samples, and a statistical evaluation using the Welch t-test.

    Download full text (pdf)
    FULLTEXT01
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf