Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Kokkolaras, Michael
    et al.
    Mourelatos, Zissemos P.
    Department of Mechanical Engineering, University of Michigan.
    Papalambros, Panos Y.
    Department of Mechanical Engineering, University of Michigan.
    Impact of uncertainty quantification on design: an engine optimisation case study2006In: International Journal of Reliability and Safety, ISSN 1479-389X, E-ISSN 1479-3903, Vol. 1, no 1-2, p. 225-237Article in journal (Refereed)
    Abstract [en]

    The method for solving design optimisation problems when some or all design variables and/or parameters are not deterministic depends on how we quantify uncertainty. Probabilistic design methods can be employed when sufficient information is available. In reality, however, we often do not have enough knowledge and/or data to conduct statistical inference. The amount of available information about the uncertain quantities may be limited to ranges of values. Possibility theory may then be employed to reformulate and solve the optimal design problem. In this paper, we use both probability and possibility theories to determine optimal values of engine characteristics for a hydraulic-hybrid powertrain of a medium-sized truck while accounting for the most significant modelling uncertainties. A worst-case optimisation using interval analysis is considered as a special case of possibilistic design. We contrast the two sets of results, draw some conclusions and discuss features of the two approaches.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf