Ändra sökning
Avgränsa sökresultatet
1 - 11 av 11
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Bär, Janosch
    et al.
    Biochemical Engineering, Aachener Verfahrenstechnik, RWTH Aachen University, Forckenbeckstr. 51, D-52074, Aachen, Germany.
    Phongpreecha, Thanaphong
    Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA.
    Kumar Singh, Sandip
    Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA.
    Kral Yilmaz, Melisa
    Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA; Department of Bioengineering, Istanbul Technical University, Istanbul, Turkey.
    Foster, Cliff E.
    DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824-1601, USA.
    Crowe, Jacob D.
    Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA.
    Hodge, David B.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik. Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA.
    Deconstruction of hybrid poplar to monomeric sugars and aromatics using ethanol organosolv fractionation2018Ingår i: Biomass Conversion and Biorefinery, ISSN 2190-6815, E-ISSN 2190-6823, Vol. 8, nr 4, s. 813-824Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Acidic ethanol organosolv fractionation of hybrid poplar was investigated to determine the impact of pretreatment conditions on the resulting biomass and lignin properties and to assess the subsequent deconstruction of the cell wall biopolymers to monomeric sugars and aromatics. It was found that increasing reaction severity (i.e., time and temperature) during the organosolv fractionation increased the rate of delignification and xylan solubilization while the lignins recovered from the liquors were found to exhibit lower degrees of polymerization. Glucose hydrolysis yields > 75% at moderate enzyme loadings (30 mg/g glucan) could be obtained for the more severe pretreatment conditions. The lignins recovered from the pretreatment liquors were subjected to fractionation using a sequential extraction with solvents of increasing polarity. It was found that the low molar mass, low polydispersity lignins increased in pretreatment liquors with increasing time and temperature and were concentrated in the methanol fraction while a high molar mass fraction was extracted with the diethyl ether. We hypothesize that the extraction of the high molar mass fraction with diethyl ether is due to partial ethyl O-alkylation of lignin hydroxyl groups during pretreatment, rendering lignins more soluble in the non-polar solvent. Finally, depolymerization of unfractionated lignins by thioacidolysis resulted in mass yields of aromatic monomers ranging from 80 to 157 mg monomer per gram of lignin and that these yields exhibited strong positive correlations to the lignin β-O-4 content, molar mass, and strong negative correlations to the pretreatment temperature.

  • 2.
    Cousins, Dylan S.
    et al.
    Department of Chemical and Biological Engineering, Montana State University, 306 Cobleigh Hall, PO Box 173920, Bozeman, MT, 59717-3920, USA.
    Rony, Asif Hasan
    Idaho National Laboratory, Idaho Falls, ID, USA.
    Otto, William G.
    Department of Chemical and Biological Engineering, Montana State University, 306 Cobleigh Hall, PO Box 173920, Bozeman, MT, 59717-3920, USA.
    Pedersen, Kristian P.
    Department of Chemical and Biological Engineering, Montana State University, 306 Cobleigh Hall, PO Box 173920, Bozeman, MT, 59717-3920, USA.
    Hernandez, Sergio
    Idaho National Laboratory, Idaho Falls, ID, USA.
    Lacey, Jeffrey A.
    Idaho National Laboratory, Idaho Falls, ID, USA.
    Aston, John E.
    Idaho National Laboratory, Idaho Falls, ID, USA.
    Hodge, David B.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik. Department of Chemical and Biological Engineering, Montana State University, 306 Cobleigh Hall, PO Box 173920, Bozeman, MT, 59717-3920, USA.
    Predictive models enhance feedstock quality of corn stover via air classification2022Ingår i: Biomass Conversion and Biorefinery, ISSN 2190-6815, E-ISSN 2190-6823Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Feedstock heterogeneity is a fundamental obstacle to cost-competitive biobased products. Agricultural products like corn stover have anatomical components that vary in their chemical composition, mechanical properties, structure, and response to chemical and biological treatments. A technique that can enrich streams in select anatomical fractions would allow a tailored deconstruction approach to increase overall process efficiency. Air classification can be leveraged for such refining; however, fundamental characterization and understanding of the particle properties that underly the physics of air classification are only modestly documented. Here, we determine fundamental particle properties including mass-to-area ratio, drag coefficient, and partition velocity that describe how anatomical tissues of corn stover behave during air classification. Mass-to-area ratios of anatomical tissues vary by nearly two orders of magnitude from 2.3 mg/mm2 for cob to 0.04 mg/mm2 for leaf. Drag coefficients of longer, fibrous materials (i.e., rind, husk, and sheath) are shown to correlate with particle area (p-value < 0.001) whereas granular tissues (i.e., cob, pith, and leaf) correlate better with mass-to-area ratio (p-values < 0.001). When compared to experimental observations, a simulated two-stage air classification and size reduction scenario predicts the overall partitioning of anatomical tissues within 15% for pith, husk, rind, and cob tissues. The model predicts an air-classified fraction preferentially enriched in cob (purity = 20%), rind (purity = 74%), and pith (purity = 4.5%) with a mass yield of 47%. Empirical relations for these properties can be used to predict the partitioning of corn stover during air classification based on anatomical type and size.

  • 3.
    Díaz, Sara
    et al.
    Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria. Edificio de Fabricación Integrada, Las Palmas de Gran Canaria, Parque Científico – Tecnológico de la ULPGC, Campus universitario de Tafira Baja, 35017, Las Palmas, Spain.
    Ortega, Zaida
    Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria. Edificio de Fabricación Integrada, Las Palmas de Gran Canaria, Parque Científico – Tecnológico de la ULPGC, Campus universitario de Tafira Baja, 35017, Las Palmas, Spain.
    Benítez, Antonio N.
    Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria. Edificio de Fabricación Integrada, Las Palmas de Gran Canaria, Parque Científico – Tecnológico de la ULPGC, Campus universitario de Tafira Baja, 35017, Las Palmas, Spain.
    Marrero, María D.
    Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria. Edificio de Fabricación Integrada, Las Palmas de Gran Canaria, Parque Científico – Tecnológico de la ULPGC, Campus universitario de Tafira Baja, 35017, Las Palmas, Spain.
    Carvalheiro, Florbela
    LNEG– Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia, Estrada Do Paço Do Lumiar, 22, 1649-038, Lisboa, Portugal.
    Duarte, Luís C.
    LNEG– Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia, Estrada Do Paço Do Lumiar, 22, 1649-038, Lisboa, Portugal.
    Matsakas, Leonidas
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Krikigianni, Eleni
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Rova, Ulrika
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Christakopoulos, Paul
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Fernandes, Maria C.
    Centro de Biotecnologia Agrícola E Agro-Alimentar Do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), Apartado 6158, 7801-908, Beja, Portugal; MED-Mediterranean Institute for Agriculture, Environment and Development, CEBAL—Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, Apartado 6158, 7801-908, Beja, Portugal.
    Oligosaccharides production by enzymatic hydrolysis of banana pseudostem pulp2023Ingår i: Biomass Conversion and Biorefinery, ISSN 2190-6815, E-ISSN 2190-6823, Vol. 13, nr 12, s. 10677-10688Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Banana production generates significant amounts of agricultural wastes, being fiber extraction one of the most relevant alternatives for their valorization. This process produces banana’s pseudostem pulp (BPP) as a byproduct, which shows an interesting composition for the biorefinery’s biochemical platform, with high polysaccharides (68%) and low lignin contents. This work deals with the enzymatic hydrolysis (EH) of raw and hydrothermally pre-treated BPP, focusing on the production of oligosaccharides (OS). Raw BPP hydrolysis with cellulase at different dosages rendered only 3.2% OS yields (OSY). Pectinase addition has not affected EH performance. On the other hand, EH of hydrothermally pre-treated BPP at 150 °C and 170 °C (P150 and P170) allowed to increase OSY up to 28% (P150, 1 FPU of cellulase/g dry biomass, 12 h), being 72% of the solubilized sugars in the form of cello-oligosaccharides. This last condition was subjected to a multi-stage EH strategy without improvements in OSY. An endo-glucanase was also tested, but obtained OSY were lower than cellulase results. Finally, obtained OS demonstrated to stimulate the growth of two Lactobacilli strains. The results show that BPP pre-treated under mild operational conditions is a good candidate for cello-oligosaccharides production by EH using 1 FPU/g DB of cellulase with a simple strategy.

    Ladda ner fulltext (pdf)
    fulltext
  • 4.
    Faisal, Abrar
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik. Department of Chemical Engineering COMSATS Institute of Information Technology Lahore.
    Zhou, Ming
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Hedlund, Jonas
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Grahn, Mattias
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Zeolite MFI adsorbent for recovery of butanol from ABE fermentation broths produced from an inexpensive black liquor-derived hydrolyzate2018Ingår i: Biomass Conversion and Biorefinery, ISSN 2190-6815, E-ISSN 2190-6823, Vol. 8, nr 3, s. 679-687Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this work, high-silica MFI zeolite adsorbent was evaluated for selective recovery of butanol from a real ABE (acetone, butanol, and ethanol) fermentation broth by batch adsorption measurements. The fermentation broth was produced using a hydrolyzate originating from Kraft black liquor, an internal stream in pulp mills, i.e., a low-cost substrate. The adsorbent was very selective towards butanol and butyric acid and became nearly saturated with a mixture of butanol and butyric acid with relative amounts of butanol and butyric acid depending on the pH. The presence of phenolic compounds in significant amounts in the fermentation broths, originating from the black liquor hydrolyzate, did not affect the adsorption of butanol and butyric acid.

  • 5.
    Furusjö, Erik
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Jafri, Yawer
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Thermodynamic equilibrium analysis of entrained flow gasification of spent pulping liquors2018Ingår i: Biomass Conversion and Biorefinery, ISSN 2190-6815, E-ISSN 2190-6823, Vol. 8, nr 1, s. 19-31Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    he main goal of this work is to investigate if thermodynamic equilibrium calculations can be useful for understanding and predicting process performance and product composition for entrained flow gasification of spent pulping liquors, such as black liquor. Model sensitivity to input data is studied and model results are compared to published pilot plant data. The high temperature and the catalytic activity of feedstock alkali make thermodynamic equilibrium a better predictor of product composition than for many other types of biomass and gasification technologies. Thermodynamic equilibrium calculations can predict the flows of the main syngas and slag products with high accuracy as shown by comparison with experimental data with small measurement errors. The main process deviations from equilibrium are methane formation and sulfur distribution between gas and slag. In order to study real process deviations from equilibrium, it is very important to use consistent experimental data. Relatively small errors in the model input, primarily related to fuel composition, can lead to grossly erroneous conclusions. The model sensitivity to fuel composition also shows that the gasification process is sensitive to naturally occurring feedstock variations. Simulations of a commercial-scale gasification process show that cold gas efficiency on sulfur-free basis can reach over 80 % and that greatly improved efficiency can be obtained by reducing ballast present in the form of water or inorganics.

    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Hannl, Thomas Karl
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Sefidari, Hamid
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Kuba, Matthias
    BEST - Bioenergy and Sustainable Technologies GmbH, Inffeldgasse 21b, AT-8010, Graz, Austria. Institute of Chemical, Environmental & Bioscience Engineering, TU Vienna, AT-1060, Vienna, Austria.
    Skoglund, Nils
    BEST - Bioenergy and Sustainable Technologies GmbH, Inffeldgasse 21b, AT-8010, Graz, Austria. Institute of Chemical, Environmental & Bioscience Engineering, TU Vienna, AT-1060, Vienna, Austria. Department of Applied Physics and Electronics, Umeå University, SE-901 87, Umeå, Sweden.
    Öhman, Marcus
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Thermochemical equilibrium study of ash transformation during combustion and gasification of sewage sludge mixtures with agricultural residues with focus on the phosphorus speciation2021Ingår i: Biomass Conversion and Biorefinery, ISSN 2190-6815, E-ISSN 2190-6823, Vol. 11, nr 1, s. 57-68Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The necessity of recycling anthropogenically used phosphorus to prevent aquatic eutrophication and decrease the economic dependency on mined phosphate ores encouraged recent research to identify potential alternative resource pools. One of these resource pools is the ash derived from the thermochemical conversion of sewage sludge. This ash is rich in phosphorus, although most of it is chemically associated in a way where it is not plant available. The aim of this work was to identify the P recovery potential of ashes from sewage sludge co-conversion processes with two types of agricultural residues, namely wheat straw (rich in K and Si) and sunflower husks (rich in K), employing thermodynamic equilibrium calculations. The results indicate that both the melting behavior and the formation of plant available phosphates can be enhanced by using these fuel blends in comparison with pure sewage sludge. This enhanced bioavailability of phosphates was mostly due to the predicted formation of K-bearing phosphates in the mixtures instead of Ca/Fe/Al phosphates in the pure sewage sludge ash. According to the calculations, gasification conditions could increase the degree of slag formation and enhance the volatilization of K in comparison with combustion conditions. Furthermore, the possibility of precipitating phosphates from ash melts could be shown. It is emphasized that the results of this theoretical study represent an idealized system since in practice, non-equilibrium influences such as kinetic limitations and formation of amorphous structures may be significant. However, applicability of thermodynamic calculations in the prediction of molten and solid phases may still guide experimental research to investigate the actual phosphate formation in the future.

  • 7.
    Isam, Mubeen
    et al.
    Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS (UTP), Bandar Seri Iskandar, 32610, Perak Darul Ridzuan, Malaysia; Building and Construction Techniques Engineering, Al-Mustaqbal University College, Babylon, 51001, Iraq.
    Baloo, Lavania
    Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS (UTP), Bandar Seri Iskandar, 32610, Perak Darul Ridzuan, Malaysia.
    Chabuk, Ali
    Department of Environment Engineering, College of Engineering, University of Babylon, Hillah, Babylon, 51001, Iraq.
    Majdi, Ali
    Building and Construction Techniques Engineering, Al-Mustaqbal University College, Babylon, 51001, Iraq.
    Al-Ansari, Nadhir
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
    Optimization and modelling of Pb (II) and Cu (II) adsorption onto red algae (Gracilaria changii)-based activated carbon by using response surface methodology2023Ingår i: Biomass Conversion and Biorefinery, ISSN 2190-6815, E-ISSN 2190-6823Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Activated carbon obtained from red algae Gracilaria changii was used as an adsorbent to remove Pb (II) and Cu (II) from an aqueous solution. The raw red algae were first impregnated with phosphoric acid, followed by thermal activation. The Box–Behnken design was used to optimize the activation process. The optimum activation parameters were 84%, 650 °C, and 175 min for acid concentration, activation temperature, and activation time, respectively. The obtained activated carbon had a high surface area of 867 m2/g. The removal of Pb (II) and Cu (II) was evaluated using a batch adsorption study. The effect of solution pH on the removal of metal ions was investigated within the range of 2–7. The effect of three important adsorption parameters (initial metal ion concentration, adsorbent dosage, and contact time) was analyzed using central composite design. The optimum removal of Pb (II) and Cu (II) was 76% and 36%, respectively. The adsorption kinetics obeyed the pseudo-second-order model, while the adsorption isotherm obeyed the Langmuir model.

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Jafri, Yawer
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Furusjö, Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Kirtania, Kawnish
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Gebart, Rikard
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Granberg, Fredrik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    A study of black liquor and pyrolysis oil co-gasification in pilot scale2018Ingår i: Biomass Conversion and Biorefinery, ISSN 2190-6815, E-ISSN 2190-6823, Vol. 8, nr 1, s. 113-124Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The effect of the blend ratio and reactor temperature on the gasification characteristics of pyrolysis oil (PO) and black liquor (BL) blends with up to 20 wt% PO was studied in a pilot-scale entrained-flow gasifier. In addition to unblended BL, three blends with PO/BL ratios of 10/90, 15/85, and 20/80 wt% were gasified at a constant load of 2.75 MWth. The 15/85 PO/BL blend was used to investigate the effect of temperature in the range 1000–1100 °C. The decrease in fuel inorganic content with increasing PO fraction resulted in more dilute green liquor (GL), and a greater portion of the feedstock carbon ended up in syngas as CO. As a consequence, the cold gas efficiency increased by about 5%-units. Carbon conversion was in the range 98.8–99.5% and did not vary systematically with either fuel composition or temperature. Although the measured reactor temperatures increased slightly with increasing PO fraction, both unblended BL and the 15% PO blend exhibited largely similar behavior in response to temperature variations. The results from this study show that blending BL with the more energy-rich PO can increase the cold gas efficiency and improve the process carbon distribution without adversely affecting either carbon conversion or the general process performance.

  • 9.
    Kuba, Matthias
    et al.
    BEST – Bioenergy and Sustainable Technologies GmbH, Inffeldgasse 21b, 8010, Graz, Austria. Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, 1060, Vienna, Austria.
    Fürsatz, Katharina
    BEST – Bioenergy and Sustainable Technologies GmbH, Inffeldgasse 21b, 8010, Graz, Austria.
    Janisch, Daniel
    Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, 1060, Vienna, Austria.
    Aziaba, Kouessan
    Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, 1060, Vienna, Austria.
    Chlebda, Damian
    Jagiellonian University, ul. Gronostajowa 2, 30-387, Kraków, Poland.
    Łojewska, Joanna
    Jagiellonian University, ul. Gronostajowa 2, 30-387, Kraków, Poland.
    Forsberg, Fredrik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.
    Umeki, Kentaro
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Hofbauer, Hermann
    Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, 1060, Vienna, Austria.
    Surface characterization of ash-layered olivine from fluidized bed biomass gasification2021Ingår i: Biomass Conversion and Biorefinery, ISSN 2190-6815, E-ISSN 2190-6823, Vol. 11, nr 1, s. 29-38Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The present study aims to present a comprehensive characterization of the surface of ash-layered olivine bed particles from dual fluidized bed gasification. It is well known from operation experience at industrial gasification plants that the bed material is activated during operation concerning its positive influence on gasification reactions. This is due to the built up of ash layers on the bed material particles; however, the chemical mechanisms are not well understood yet. Olivine samples from long-term operation in an industrial-scale gasification plant were investigated in comparison to fresh unused olivine. Changes of the surface morphology due to Ca-enrichment showed a significant increase of their surface area. Furthermore, the Ca-enrichment on the ash layer surface was distinctively associated to CaO being present. The presence of CaO on the surface was proven by adsorption tests of carbon monoxide as model compound. The detailed characterization contributes to a deeper understanding of the surface properties of ash layers and forms the basis for further investigations into their influence on gasification reactions.

  • 10.
    Niero, Luisa
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geovetenskap och miljöteknik.
    Norgren, Robert
    Mid Sweden University, 851 70, Sundsvall, Sweden.
    Kumpiene, Jurate
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geovetenskap och miljöteknik.
    Jonsson, Anders
    Mid Sweden University, 831 25, Östersund, Sweden.
    The effect of pH, temperature, and inoculum on the fermentation of pulp and paper biosludge: increasing the nutrient availability for rearing of black soldier fly larvae2022Ingår i: Biomass Conversion and Biorefinery, ISSN 2190-6815, E-ISSN 2190-6823Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Pulp and paper production is one of the largest global industries producing annually 400 million metric tons of pulp and paper products and 6 million tons of pulp and paper biosludge (PPBS). From a resource efficiency and sustainability perspective, there is a need for improving PPBS management. This study assessed fermentation of PPBS as pretreatment to improve PPBS feasibility as feed for black soldier fly larvae. The impact of temperature, pH, and inoculum on the concentration of soluble chemical oxygen demand (sCOD) and volatile fatty acids (VFA) was assessed. An initial pH of 10 and the addition of inoculum from an anaerobic digester substantially increased the concentration of sCOD. The obtained concentration of VFA was low compared to the VFA concentration needed to improve the growth of Black Soldier Fly Larvae (BSFL). The PPBS is recalcitrant to fermentation because of the high content of lignocellulose. Fermentation as done in this study does not convert PPBS to a feasible feed for black soldier fly larvae; thus, further research on improved fermentation is needed. However, fermentation at alkaline pH and addition of inoculum do increase the final pH of PPBS which improves its feasibility as feed for BSFL. Future studies should explore pH > 10 and temperatures > 55 °C to increase sCOD and improving generation of VFA by removal of inhibiting substances, testing other types of inoculum (rumen microorganisms) and co-fermentation.

  • 11.
    Sharma, Amit Kumar
    et al.
    Department of Chemistry and Biofuels Research Laboratory, Centre for Alternate Energy Research, R&D, University of Petroleum and Energy Studies, Dehradun, UK, India.
    Ghodke, Praveen
    Department of Chemical Engineering, National Institute of Technology Calicut, 673 601, Kozhikode, India.
    Sharma, Pankaj Kumar
    Department of Mechanical Engineering and Biofuels Research Laboratory, Centre for Alternate Energy Research, R&D, University of Petroleum and Energy Studies, Dehradun, UK, India.
    Manna, Suvendu
    Department of Health Safety, Environment and Civil Engineering, School of Engineering, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Dehradun, Uttarakhand, 248007, India.
    Pugazhendhi, Arivalagan
    School of Renewable Energy, Maejo University, Chiang Mai, 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan.
    Matsakas, Leonidas
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Patel, Alok
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Holistic utilization of Chlorella pyrenoidosa microalgae for extraction of renewable fuels and value-added biochar through in situ transesterification and pyrolysis reaction process2022Ingår i: Biomass Conversion and Biorefinery, ISSN 2190-6815, E-ISSN 2190-6823Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Present study deals with a holistic approach to bioenergy production from a single-celled green algae Chlorella pyrenoidosa aiming to valorise all biomass components. In the first phase, the microalgae biomass was used to produce biodiesel in a microwave-assisted biodiesel reactor by in situ transesterification process. The biomass residue left after biodiesel production was pyrolyzed in a fixed bed pyrolysis reactor at various isothermal temperatures (400, 450, 500, 550, and 600°C) in second phase. The pyrolysis reaction results revealed that the highest bio-oil yield was 35.33 wt% along with 51.23 wt% biochar and 13.44 wt% pyrolysis gas at 500 °C. FTIR and GC–MS analyses of bio-oil confirm the existence of hydrocarbons as well as oxygenated chemicals like esters, phenols, and acid derivatives. Furthermore, the fuel properties of bio-oil as well as biodiesel e.g. viscosity, density, calorific value, flash point, and pour point were determined using standard procedures (ASTM D6751–02, EN–14214, and IS) and confirmed to be appropriate for stationary engine application. On the other hand, the biochar characterisation showed that it holds good potential for usage as a biocoal in industrial boilers/power plants or cooking stoves. Hence, this study demonstrates the utilization of Chlorella pyrenoidosa microalgae for production of eco-friendly renewable fuels as well as a wide range of value-added co-products with a zero-waste biorefinery approach.

1 - 11 av 11
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf