Ändra sökning
Avgränsa sökresultatet
1 - 10 av 10
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Concina, Isabella
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Ibupoto, Zafar Hussain
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Dr. M. A. Kazi Institute of Chemistry University of Sindh Jamshoro, Sindh, Pakistan.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Semiconducting metal oxide nanostructures for water splitting and photovoltaics2017Ingår i: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, Vol. 7, nr 23Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Metal oxide (MOx) semiconducting nanostructures hold the potential for playing a critical role in the development of a new platform for renewable energies, including energy conversion and storage through photovoltaic effect, solar fuels, and water splitting. Earth-abundant MOx nanostructures can be prepared through simple and scalable routes and integrated in operating devices, which enable exploitation of their outstanding optical, electronic, and catalytic properties. In this review, the latest research results in this field are illustrated, highlighting the versatility of MOx nanostructures in meeting the stringent requirements to boost the efficiency of different systems. The functional properties inherently correlate to the morphology and the crystalline habit of MOx, which in most of the cases are organized in complex heterostructures. Tailoring the assembly of heterojunctions and their electronic band structure, the catalytic surface properties and the charge transport through complex networks represent the main challenge for the transition of MOx from the research to the real-life in the field of energy conversion and storage.

  • 2.
    Concina, Isabella
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Ibupoto, Zafar
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Kazi Institute of Chemistry University of Sindh Jamshoro.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Electrochemical Water Splitting: Semiconducting Metal Oxide Nanostructures for Water Splitting and Photovoltaics2017Ingår i: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, Vol. 7, nr 23Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Semiconducting metal oxide nanostructures represent an appealing class of materials to be applied as efficient electrodes in electrochemical and photoelectrochemical water splitting and in photovoltaics. In article number 1700706, Isabella Concina, Zafar Hussain Ibupoto, and Alberto Vomiero review the latest achievements in the field, illustrating how the structural and functional properties of metal oxides and metal oxide composites can be optimized for targeted applications.

  • 3.
    Gatti, Teresa
    et al.
    Center for Materials Research, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392 Giessen, Germany.
    Lamberti, Francesco
    Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, 35131 Italy; Interdepartmental Centre Giorgio Levi Cases for Energy Economics and Technology, University of Padova, via Marzolo 9, Padova, 35131 Italy.
    Mazzaro, Raffaello
    Institute for Microelectronics and Microsystems, Italian National Research Council, Section of Bologna, Bologna, 40129 Italy.
    Kriegel, Ilka
    Functional Nanosystems, Italian Institute of Technology, via Morego 30, Genova, 16163 Italy.
    Schlettwein, Derck
    Center for Materials Research, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392 Giessen, Germany.
    Enrichi, Francesco
    CNR-ISP, Institute of Polar Sciences, National Research Council, Via Torino 155, Mestre-Venezia, 30172 Italy; Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, via Torino 155, Venezia, 30172 Italy.
    Lago, Nicolò
    Department of Information Engineering, University of Padova, Via Gradenigo 6/B, Padova, 35131 Italy.
    Di Maria, Eleonora
    Interdepartmental Centre Giorgio Levi Cases for Energy Economics and Technology, University of Padova, via Marzolo 9, Padova, 35131 Italy; Department of Economics and Management “Marco Fanno”, University of Padova, Via del Santo 33, Padova, 35123 Italy.
    Meneghesso, Gaudenzio
    Interdepartmental Centre Giorgio Levi Cases for Energy Economics and Technology, University of Padova, via Marzolo 9, Padova, 35131 Italy; Department of Information Engineering, University of Padova, Via Gradenigo 6/B, Padova, 35131 Italy.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, via Torino 155, Venezia, 30172 Italy.
    Gross, Silvia
    Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, 35131 Italy; Interdepartmental Centre Giorgio Levi Cases for Energy Economics and Technology, University of Padova, via Marzolo 9, Padova, 35131 Italy; Karlsruher Institut für Technologie (KIT), Institut für Technische Chemie und Polymerchemie (ITCP), Engesserstr. 20, 76131 Karlsruhe, Germany.
    Opportunities from Doping of Non-Critical Metal Oxides in Last Generation Light-Conversion Devices2021Ingår i: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, Vol. 11, nr 31, artikel-id 2101041Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    The need to develop sustainable energy solutions is an urgent requirement for society, with the additional requirement to limit dependence on critical raw materials, within a virtuous circular economy model. In this framework, it is essential to identify new avenues for light-conversion into clean energy and fuels exploiting largely available materials and green production methods. Metal oxide semiconductors (MOSs) emerge among other species for their remarkable environmental stability, chemical tunability, and optoelectronic properties. MOSs are often key constituents in next generation energy devices, mainly in the role of charge selective layers. Their use as light harvesters is hitherto rather limited, but progressively emerging. One of the key strategies to boost their properties involves doping, that can improve charge mobility, light absorption and tune band structures to maximize charge separation at heterojunctions. In this review, effective methods to dope MOSs and to exploit the derived benefits in relation to performance enhancement in different types of devices are identified and critically compared. The work is focused specifically on the best opportunities coming from the use of non-critical raw materials, so as to contribute in defining an economically feasible roadmap for light conversion technologies based on these highly stable and widely available compounds. 

  • 4.
    Kumar, Pankaj
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    You, Shujie
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia, 30172, Mestre, Italy.
    Recent Progress in Materials and Device Design for Semitransparent Photovoltaic Technologies2023Ingår i: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, Vol. 13, nr 39, artikel-id 2301555Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Semitransparent photovoltaic (STPV) solar cells offer an immense opportunity to expand the scope of photovoltaics to special applications such as windows, facades, skylights, and so on. These new opportunities have encouraged researchers to develop STPVs using traditional thin-film solar cell technologies (amorphous-Si, CdTe, and CIGS or emerging solar cells (organic, perovskites, and dye-sensitized). There are considerable improvements in both power conversion efficiency (PCE) and semitransparency of these STPV devices. This review studies the device structure of state-of-the-art STPV devices and thereby analyzes the different approaches toward maximizing the product of PCE and average visible transmittance. The origins of PCE losses during the opaque-to-semitransparent transition in the different STPV technologies are discussed. In addition, critical practical aspects relevant to all STPV devices, such as compatibility of the top transparent electrode with the device structure, buffer layer optimization, light management engineering, scale-up, and stability, are also reported. This overview is expected to facilitate researchers across different technologies to identify and overcome the challenges toward achieving higher light utilization efficiencies in STPVs.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Mazzaro, Raffaello
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    The Renaissance of Luminescent Solar Concentrators: the Role of Inorganic Nanomaterials2018Ingår i: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, Vol. 8, nr 33, artikel-id 1801903Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    While luminescent solar concentrators (LSCs) have a simple architecture—a transparent matrix embedding a luminescent fluorophore coupled with solar cells at the lateral side of the LSC slab—multiple paths for possible light losses exist. These are inherently interconnected, and in the past, limited the interest in this device, due to the gap between the theoretical possibilities and experimental achievements. This gap was a result, primarily, of the optical features of the luminescent dyes, since conventional organic luminophores are affected by limited performance in LSC devices. The rise of a wide portfolio of optically active inorganic nanomaterials in the last decade provides an alternative to organic dyes and has lead to a renaissance in the role of LSCs among the unconventional solar energy conversion devices. This paper reviews the latest results in the development of LSCs based on different classes of nanomaterials, focusing on the specific features and critically analyzing the pros and cons of the proposed structures. Particular attention is devoted to the role of the luminescence properties, e.g., the Stokes shift and the photoluminescence quantum yield, with respect to the performance of the LSC device. Future challenges to the successful employment of these devices for building integrated photovoltaics are also discussed.

  • 6.
    Shifa, Tofik Ahmed
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Confined Catalysis: Progress and Prospects in Energy Conversion2019Ingår i: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, Vol. 9, nr 40, artikel-id 1902307Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Space confined catalysis has emerged as viable strategy for achieving potent and efficient catalysts in various important reactions. It offers a means of creating unique nanoscale chemical environments partitioned from the surrounding bulk space. This gives rise to the phenomena of nanoconfinement, where the energetics and kinetics of catalytic reactions can be modulated upon confining the catalysts in a particular site. Various scaffolds have been reported so far for confinement. Among these, void spaces under the cover of 2D materials, van der Waals (vdW) gaps of layered 2D materials, nanotubes, and porous surfaces have recently won copious attention. In this review, the concept of space confinement with respect to its effect on the electronic and structural properties of a catalyst is discussed. Emphasis is devoted to the catalysis of water splitting and CO2 reduction reactions. The progress in the design and applications of space confined catalysts is then traced. Finally, a discussion of emerging issues yet to be explored for this strategy to achieve a high efficiency, and future directions with the potential to become a new hotspots are presented.

  • 7.
    Solomon, Getachew
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Landström, Anton
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Mazzaro, Raffaello
    Istituto di Microelettronica e Microsistemi-CNR (CNR, IMM), Via Piero Gobetti 101, Bologna, 95121 Italy.
    Jugovac, Matteo
    Istituto di Struttura della Materia-CNR (ISM-CNR), SS 14 Km 163,5, Trieste, 34149 Italy.
    Moras, Paolo
    Istituto di Struttura della Materia-CNR (ISM-CNR), SS 14 Km 163,5, Trieste, 34149 Italy.
    Cattaruzza, Elti
    Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172 Italy.
    Morandi, Vittorio
    Istituto di Microelettronica e Microsistemi-CNR (CNR, IMM), Via Piero Gobetti 101, Bologna, 95121 Italy.
    Concina, Isabella
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172 Italy.
    NiMoO4@Co3O4 Core–Shell Nanorods: In Situ Catalyst Reconstruction toward High Efficiency Oxygen Evolution Reaction2021Ingår i: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, Vol. 11, nr 32, artikel-id 2101324Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The sluggish kinetics of the oxygen evolution reaction (OER) is the bottleneck for the practical exploitation of water splitting. Here, the potential of a core–shell structure of hydrous NiMoO4 microrods conformally covered by Co3O4 nanoparticles via atomic layer depositions is demonstrated. In situ Raman and synchrotron-based photoemission spectroscopy analysis confirms the leaching out of Mo facilitates the catalyst reconstruction, and it is one of the centers of active sites responsible for higher catalytic activity. Post OER characterization indicates that the leaching of Mo from the crystal structure, induces the surface of the catalyst to become porous and rougher, hence facilitating the penetration of the electrolyte. The presence of Co3O4 improves the onset potential of the hydrated catalyst due to its higher conductivity, confirmed by the shift in the Fermi level of the heterostructure. In particular NiMoO4@Co3O4 shows a record low overpotential of 120 mV at a current density of 10 mA cm−2, sustaining a remarkable performance operating at a constant current density of 10, 50, and 100 mA cm−2 with negligible decay. Presented outcomes can significantly contribute to the practical use of the water-splitting process, by offering a clear and in-depth understanding of the preparation of a robust and efficient catalyst for water-splitting.

  • 8.
    Zhou, Yufeng
    et al.
    INRS, Quebec University, Varennes.
    Benetti, Daniele
    INRS, Quebec University, Varennes.
    Fan, Zhiyuan
    Physics and Astronomy Department, Ohio University, Athens, OH.
    Zhao, Haiguang
    Institut National de la Recherche Scientifique Energie Varennes, INRS, Quebec University, Varennes.
    Ma, Dongling
    Institut National de la Recherche Scientifique Energie Varennes, INRS, Quebec University, Varennes.
    Govorov, Alexander O.
    Physics and Astronomy Department, Ohio University, Athens, OH.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Rosei, Frederico
    Institut National de la Recherche Scientifique Energie Varennes.
    Luminescent Solar Concentrators: Near Infrared, Highly Efficient Luminescent Solar Concentrators2016Ingår i: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, Vol. 6, nr 11Artikel i tidskrift (Övrigt vetenskapligt)
    Abstract [en]

    The fabrication of a low reabsorption emission loss, high efficient luminescent solar concentrator (LSC) is demonstrated by embedding near infrared (NIR) core/shell quantum dots (QDs) in a polymer matrix. An engineered Stokes shift in NIR core/shell PbS/CdS QDs is achieved via a cation exchange approach by varying the core size and shell thickness through the refined reaction parameters such as reaction time, temperature, precursor molar ratio, etc. The as-synthesized core/shell QDs with high quantum yield (QY) and excellent chemical/photostability exhibit a large Stokes shift with respect to the bare PbS QDs due to the strong core-to-shell electrons leakage. The large-area planar LSC based on core/shell QDs exhibits the highest value (6.1% with a geometric factor of 10) for optical efficiency compared to the bare NIR QD-based LSCs and other reported NIR QD-based LSCs. The suppression of emission loss and the broad absorption of PbS/CdS QDs offer a promising pathway to integrate LSCs and photovoltaic devices with good spectral matching, indicating that the proposed core/shell QDs are strong candidates for fabricating high efficiency semi-transparent large-area LSCs.

  • 9.
    Zhou, Yufeng
    et al.
    INRS, Quebec University, Varennes.
    Benetti, Daniele
    INRS, Quebec University, Varennes.
    Fan, Zhiyuan
    Physics and Astronomy Department, Ohio University, Athens, OH.
    Zhao, Haiguang
    Institut National de la Recherche Scientifique Energie Varennes, INRS, Quebec University, Varennes.
    Ma, Dongling
    Institut National de la Recherche Scientifique Energie Varennes, INRS, Quebec University, Varennes.
    Govorov, Alexander O.
    Physics and Astronomy Department, Ohio University, Athens, OH.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Rosei, Frederico
    Institut National de la Recherche Scientifique Energie Varennes.
    Near Infrared, Highly Efficient Luminescent Solar Concentrators2016Ingår i: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, Vol. 6, nr 11, artikel-id 1501913Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The fabrication of a low reabsorption emission loss, high efficient luminescent solar concentrator (LSC) is demonstrated by embedding near infrared (NIR) core/shell quantum dots (QDs) in a polymer matrix. An engineered Stokes shift in NIR core/shell PbS/CdS QDs is achieved via a cation exchange approach by varying the core size and shell thickness through the refined reaction parameters such as reaction time, temperature, precursor molar ratio, etc. The as-synthesized core/shell QDs with high quantum yield (QY) and excellent chemical/photostability exhibit a large Stokes shift with respect to the bare PbS QDs due to the strong core-to-shell electrons leakage. The large-area planar LSC based on core/shell QDs exhibits the highest value (6.1% with a geometric factor of 10) for optical efficiency compared to the bare NIR QD-based LSCs and other reported NIR QD-based LSCs. The suppression of emission loss and the broad absorption of PbS/CdS QDs offer a promising pathway to integrate LSCs and photovoltaic devices with good spectral matching, indicating that the proposed core/shell QDs are strong candidates for fabricating high efficiency semi-transparent large-area LSCs.

  • 10.
    Zhou, Yufeng
    et al.
    INRS, Quebec University, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X1S2 Canada.
    Celikin, Mart
    INRS, Quebec University, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X1S2 Canada.
    Camellini, Andrea
    Dipartimento di Fisica, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano, Italy.
    Sirigu, Gianluca
    Dipartimento di Fisica, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano, Italy.
    Tong, Xin
    INRS, Quebec University, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X1S2 Canada; Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China.
    Jin, Lei
    INRS, Quebec University, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X1S2 Canada.
    Basu, Kaustubh
    INRS, Quebec University, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X1S2 Canada.
    Tong, Xin
    INRS, Quebec University, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X1S2 Canada; School of Chemistry and Material Science, Guizhou Normal University, 550001 Guiyang, China.
    Barba, David
    INRS, Quebec University, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X1S2 Canada.
    Ma, Dongling
    INRS, Quebec University, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X1S2 Canada.
    Sun, Shuhui
    INRS, Quebec University, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X1S2 Canada.
    Vidal, François
    INRS, Quebec University, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X1S2 Canada.
    Zavelani-Rossi, Margherita
    Dipartimento di Energia, Politecnico di Milano, via Ponzio 34/3 and IFN-CNR, P.za L. Da Vinci 32, 20133 Milano, Italy.
    Wang, Zhiming M.
    Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China.
    Zhao, Haiguang
    INRS, Quebec University, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X1S2 Canada.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Rosei, Frederico
    INRS, Quebec University, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X1S2 Canada; Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China.
    Ultrasmall Nanoplatelets: The Ultimate Tuning of Optoelectronic Properties2017Ingår i: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, Vol. 7, nr 17, artikel-id 1602728Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    2D semiconducting nanoplatelets (NPLs) are an emerging class of photoactive materials. They can be used as building blocks in optoelectronic devices thanks to their large absorption coefficient, high carrier mobility, and unique thickness-dependent optical transitions. The main drawback of NPLs is their large lateral size, which results in unfavorable band energy levels and low quantum yield (QY). Here, ultrasmall lead chalcogenide PbSe1- xSx NPLs are prepared, which exhibit an unprecedented QY of ≈60%, the highest ever reported for this structure. The NPLs are applied as light absorber in a photoelectrochemical system, leading to a saturated photocurrent density of ≈5.0 mA cm-2 (44 mL cm-2 d-1), which is a record for NPL-based photoelectrodes in solar-driven hydrogen generation. Ultrasmall NPLs hold the potential for breakthrough developments in the field of optically active nanomaterials.

1 - 10 av 10
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf