Ändra sökning
Avgränsa sökresultatet
1 - 3 av 3
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Enns-Bray, William S
    et al.
    Institute for Biomechanics, ETH-Zürich, Switzerland.
    Bahaloo, Hassan
    Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, School of Engineering and Natural Sciences University of Iceland, Reykjavik, Iceland.
    Fleps, Ingmar
    Institute for Biomechanics, ETH-Zürich, Switzerland.
    Ariza, Oscar
    Orthopaedic and Injury Biomechanics Group University of British Columbia, Vancouver, Canada. Centre for Hip Health and Mobility University of British Columbia, Vancouver, Canada. Department of Mechanical Engineering University of British Columbia, Vancouver, Canada..
    Gilchrist, Seth
    Orthopaedic and Injury Biomechanics Group University of British Columbia, Vancouver, Canada. Centre for Hip Health and Mobility University of British Columbia, Vancouver, Canada. Department of Mechanical Engineering University of British Columbia, Vancouver, Canada. Department of Orthopaedics University of British Columbia, Vancouver, Canada..
    Widmer, Rene P
    Institute for Biomechanics, ETH-Zürich, Switzerland.
    Guy, Pierre
    Centre for Hip Health and Mobility University of British Columbia, Vancouver, Canada. Department of Orthopaedics University of British Columbia, Vancouver, Canada..
    Pálsson, Halldor
    Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, School of Engineering and Natural Sciences University of Iceland, Reykjavik, Iceland..
    Ferguson, Stephen J
    Institute for Biomechanics, ETH-Zürich, Switzerland..
    Cripton, Peter A
    Orthopaedic and Injury Biomechanics Group University of British Columbia, Vancouver, Canada. Centre for Hip Health and Mobility University of British Columbia, Vancouver, Canada. Department of Mechanical Engineering University of British Columbia, Vancouver, Canada. Department of Orthopaedics University of British Columbia, Vancouver, Canada..
    Helgason, Benedikt
    Institute for Biomechanics, ETH-Zürich, Switzerland.
    Material mapping strategy to improve the predicted response of the proximal femur to a sideways fall impact2018Ingår i: Journal of The Mechanical Behavior of Biomedical Materials, ISSN 1751-6161, E-ISSN 1878-0180, Vol. 78, s. 196-205Artikel i tidskrift (Refereegranskat)
  • 2.
    Gustafsson, Gustaf
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Material- och solidmekanik.
    Nishida, Masahiro
    Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Japan, Nagoya Institute of Technology.
    Häggblad, Hans-åke
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Material- och solidmekanik.
    Ito, Yoshikata
    Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Japan.
    Jonsén, Pär
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Material- och solidmekanik.
    Takayama, Tetsuo
    Yamagata University.
    Todo, Mitsugu
    Kyushu University, Kyushu University, 6-1, Kasuga-koen, Kasuga, Fukuoka, Japan.
    Mechanical characterization and modelling of the temperature-dependent impact behaviour of a biocompatible poly(L-lactide)/poly(ε-caprolactone) polymer blend2015Ingår i: Journal of The Mechanical Behavior of Biomedical Materials, ISSN 1751-6161, E-ISSN 1878-0180, Vol. 51, s. 279-290Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Poly(ε-caprolactone) (PCL) is a ductile, bioabsorbable polymer that has been employed as a blend partner for poly(L-lactic acid) (PLLA). An improvement of the material strength and impact resistance of PLLA/PCL polymer blends compared to pure PLLA has been shown previously. To use numerical simulations in the design process of new components composed of the PLLA/PCL blend, a constitutive model for the material has to be established. In this work, a constitutive model for a PLLA/PCL polymer blend is established from the results of compressive tests at high and low strain rates at three different temperatures, including the body temperature. Finite element simulations of the split Hopkinson pressure bar test using the established constitutive model are carried out under the same condition as the experiments. During the experiments, the changes in the diameter and thickness of the specimens are captured by a high-speed video camera. The accuracy of the numerical model is tested by comparing the simulation results, such as the stress, strain, thickness and diameter histories of the specimens, with those measured in the experiments. The numerical model is also validated against an impact test of non-homogenous strains and strain rates. The results of this study provide a validated numerical model for a PLLA/PCL polymer blend at strain rates of up to 1800 s−1 in the temperature range between 22 °C and 50 °C.

  • 3.
    Shbeh, Mohammed
    et al.
    Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK.
    Wally, Zena J.
    Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Sheffield, UK.Insigneo Institute for in Silico Medicine, University of Sheffield, Pam Liversidge Building, Sheffield, UK.The University of Kufa, College of Dentistry, Department of Prosthodontic, Iraq.
    Elbadawi, Mohammed
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Signaler och system.
    Mosalagae, Mosalagae
    Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK.
    Al-Alak, Hassan
    University of Kufa, Faculty of Engineering, Department of Materials Engineering, Iraq.
    C. Reilly, Gwendolen
    Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK.Insigneo Institute for in Silico Medicine, University of Sheffield, Pam Liversidge Building, Sheffield, UK.
    Goodall, Russell
    Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, UK.
    Incorporation of HA into porous titanium to form Ti-HA biocomposite foams2019Ingår i: Journal of The Mechanical Behavior of Biomedical Materials, ISSN 1751-6161, E-ISSN 1878-0180, Vol. 96, s. 193-203Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ti foams are advanced materials with great potential for biomedical applications as they can promote bone ingrowth, cell migration and attachment through providing interconnected porous channels that allow the penetration of the bone-forming cells and provide them with anchorage sites. However, Ti is a bio-inert material and thus only mechanical integration is achieved between the porous implant and the surrounding tissue, not the chemical integration which would be desirable. In this work particles of a biologically active material (Hydroxyapatite, HA) are blended with titanium powder, and used to produce Ti foams through the use of Metal Injection Moulding (MIM) in combination with a space holder. This produces titanium foams with incorporated HA, potentially inducing more favourable bone response to an implant from the surrounding tissue and improving the osseointegration of the Ti foams. To be able to do this, samples need to show sufficient mechanical and biocompatibility properties, and the foams produced were assessed for their mechanical behaviour and in vitro biological response. It was found that the incorporation of high levels of HA into the Ti foams induces brittleness in the structure and reduces the load bearing ability of the titanium foams as the chemical interaction between Ti and HA results in weak ceramic phases. However, adding small amounts of HA (about 2 vol%) was found to increase the yield strength of the Ti foams by 61% from 31.6 MPa to 50.9 MPa. Biological tests were also carried out in order to investigate the suitability of the foams for biomedical applications. It was found that Ti foams both with and without HA (at the 2 vol% addition level) support calcium and collagen production and have a good level of biocompatibility, with no significant difference observed between samples with and without the HA addition.

1 - 3 av 3
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf