Ändra sökning
Avgränsa sökresultatet
1 - 2 av 2
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Izyumskaya, N.
    et al.
    Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia.
    Tahira, Aneela
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Ibupoto, Zafar
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Lewinski, N.
    Department of Chemical and Lifescience Engineering, Virginia Commonwealth University, Richmond, Virginia.
    Avrutin, V.
    Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia.
    Özgür, Ü
    Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia.
    Topsakal, E.
    Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia.
    Willander, M.
    Department of Science and Technology, Campus Norrkoping, Linköping University.
    Morkoç, H.
    Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia.
    Review-Electrochemical Biosensors Based on ZnO Nanostructures2017Ingår i: ECS Journal of Solid State Science and Technology, ISSN 2162-8769, E-ISSN 2162-8777, Vol. 6, nr 8, s. Q84-Q100Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In recent years, electrochemical biosensors based on semiconductor and metal nanostructures have attracted a great deal of attention as new instruments in the healthcare arsenal that could substantially enhance early diagnostics capabilities and thus enable active health management. Among numerous materials studied, nanostructured ZnO has been recognized as a promising platform for biomedical applications owing to its low cost, relative ease of preparation leading to a rich variety of nanostructures with high aspect ratios (nanowires, nanobelts, nanoflakes), proven biocompatibility in the bulk form, electronic properties supporting various device types, and catalytic surface activity. In this contribution, we review the recent progress in development of enzymatic and non-enzymatic biosensors based on ZnO nanostructures. After a critical discussion of biocompatibility of nanostructured ZnO, we segue into the discussion of ZnO-based devices for detection of physiologically important analytes, including glucose, cholesterol, L-lactic acid, uric acid, metal ions, and pH. Special attention is given to ZnO nanorod based sensors for intracellular measurements.

  • 2.
    Navarro Prado, F.
    et al.
    Centre for Energy, Materials and Telecommunications, Institut national de la recherche scientifique.
    Benetti, Daniele
    Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique.
    Benavides, Vicente
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Zhao, Haiguang
    INRS-EMT, Varennes, QC.
    Cloutier, S.G.
    Département de Génie Électrique, École de Technologie Supérieure.
    Castaño, V.M.
    Centre of Applied Physics and Advanced Technology, National Autonomous University of Mexico.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Rosei, Frederico
    Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, Université du Québec, Varennes, Québec.
    Nanofiber-Structured TiO2 Nanocrystals as a Scattering Layer in Dye-Sensitized Solar Cells2017Ingår i: ECS Journal of Solid State Science and Technology, ISSN 2162-8769, E-ISSN 2162-8777, Vol. 6, nr 4, artikel-id N32-N37Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We developed a scattering layer composed of TiO2 nanocrystals assembled into a densely packed three-dimensional network of nanofibers to localize light within a photoanode used in dye sensitized solar cells (DSSCs). The electro-netting approach was applied to obtain polyamide 6 nanofibers with bi-modal diameter distribution, followed by solvothermal synthesis for the coating of TiO2 nanocrystals on the polymer template. The resulting nanofiber-structured scattering layer (NFSL) is composed of TiO2 nanofibers (200-300 nm in diameter) supporting an ultrathin nanofiber network (diameters within 10-50 nm) and exhibits strong light scattering in the visible range (400 to 700 nm). This NFSL was applied on top of a transparent active TiO2 layer (TL) forming the photoanode in DSSCs. The performance of the bi-layered photoanode was compared to its analogue, fabricated with commercial scattering layers containing different sizes of nanoparticles. The DSSCs assembled with the NFSL showed an 18% enhancement in power conversion efficiency (PCE) compared to that of DSSCs whose photoanode contained only a TL. This enhancement factor was improved up to 31% when the bi-layered structure was post-treated with TiCl4. The PCE improvement was mainly associated with the light harvesting efficiency within the photoanode because of scattering from the NFSL and increased dye adsorption due to the addition of this top layer. These conclusions were inferred from diffuse reflectance behavior, dye loading measurements, external quantum efficiency and electrochemical properties. Our work demonstrates a promising approach without the requirement of time consuming and complicated procedures for the fabrication of a densely packed 3D nanofiber network scattering layer for diverse energy conversion devices and photocatalytic applications

1 - 2 av 2
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf