Endre søk
Begrens søket
1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Cockell, C.S.
    et al.
    UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh.
    Bush, T.
    UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh.
    Bryce, C.
    UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh.
    Direito, S.
    UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh.
    Fox-Powell, M.
    UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh.
    Harrison, J.P
    UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh.
    Lammer, H.
    Austrian Academy of Sciences, Space Research Institute, Graz.
    Landenmark, H.
    UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh.
    Martin-Torres, Javier
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    Nicholson, N.
    UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh.
    Noack, L.
    Department of Reference Systems and Planetology, Royal Observatory of Belgium, Brussels.
    O'Malley-James, J.
    School of Physics and Astronomy, University of St Andrews, St Andrews.
    Payler, S.J.
    UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh.
    Rushby, A.
    Centre for Ocean and Atmospheric Science (COAS), School of Environmental Sciences, University of East Anglia, Norwich.
    Samuels, T.
    UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh.
    Schwendner, P.
    UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh.
    Wadsworth, J.
    UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh.
    Mier, Maria-Paz Zorzano
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    Habitability: a review2016Inngår i: Astrobiology, ISSN 1531-1074, E-ISSN 1557-8070, Vol. 16, nr 1, s. 89-117Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Habitability is a widely used word in the geoscience, planetary science, and astrobiology literature, but what does it mean? In this review on habitability, we define it as the ability of an environment to support the activity of at least one known organism. We adopt a binary definition of “habitability” and a “habitable environment.” An environment either can or cannot sustain a given organism. However, environments such as entire planets might be capable of supporting more or less species diversity or biomass compared with that of Earth. A clarity in understanding habitability can be obtained by defining instantaneous habitability as the conditions at any given time in a given environment required to sustain the activity of at least one known organism, and continuous planetary habitability as the capacity of a planetary body to sustain habitable conditions on some areas of its surface or within its interior over geological timescales. We also distinguish between surface liquid water worlds (such as Earth) that can sustain liquid water on their surfaces and interior liquid water worlds, such as icy moons and terrestrial-type rocky planets with liquid water only in their interiors. This distinction is important since, while the former can potentially sustain habitable conditions for oxygenic photosynthesis that leads to the rise of atmospheric oxygen and potentially complex multicellularity and intelligence over geological timescales, the latter are unlikely to. Habitable environments do not need to contain life. Although the decoupling of habitability and the presence of life may be rare on Earth, it may be important for understanding the habitability of other planetary bodies

  • 2.
    Korablev, Oleg I.
    et al.
    Space Research Institute IKI, Moscow.
    Dobrolensky, Yurii
    Space Research Institute IKI, Moscow.
    Evdokimova, Nadezhda
    Space Research Institute IKI, Moscow.
    Fedorova, Anna A.
    Space Research Institute IKI, Moscow.
    Kuzmin, Ruslan O.
    Space Research Institute IKI, Moscow.
    Mantsevich, Sergei N.
    Space Research Institute IKI, Moscow.
    Cloutis, Edward A.
    The University of Winnipeg.
    Carter, John
    Institut d'Astrophysique Spatiale IAS-CNRS/Université Paris Sud Orsay.
    Poulet, Francois
    Institut d'Astrophysique Spatiale IAS-CNRS/Université Paris Sud Orsay.
    Flahaut, Jessica
    Université Lyon 1, ENS-Lyon, CNRS.
    Griffiths, Andrew
    Mullard Space Science Laboratory, University College London, Dorking.
    Gunn, Matthew
    Department of Physics, Aberystwyth University.
    Schmitz, Nicole
    German Aerospace Center DLR, Köln.
    Martin-Torres, Javier
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    Zorzano Mier, Maria-Paz
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    Rodianov, Daniil S.
    Space Research Institute IKI, Moscow.
    Vago, Jorge L.
    ESA ESTEC, Noordwijk.
    Stepanov, Alexander V.
    Space Research Institute IKI, Moscow.
    Titov, Andrei Yu.
    Space Research Institute IKI, Moscow.
    Vyazovetsky, Nikita A.
    Space Research Institute IKI, Moscow.
    Trokhimovskiy, Alexander Yu.
    Space Research Institute IKI, Moscow.
    Sapgir, Alexander G.
    Space Research Institute IKI, Moscow.
    Kalinnikov, Yurii K.
    Space Research Institute IKI, Moscow.
    Ivanov, Yurii S.
    Main Astronomical Observatory MAO NASU, Kyiv.
    Shapkin, Alexei A.
    Space Research Institute IKI, Moscow.
    Ivanov, Andrei Yu.
    Space Research Institute IKI, Moscow.
    Infrared Spectrometer for ExoMars: A Mast-Mounted Instrument for the Rover2017Inngår i: Astrobiology, ISSN 1531-1074, E-ISSN 1557-8070, Vol. 17, nr 6-7, s. 542-564Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    ISEM (Infrared Spectrometer for ExoMars) is a pencil-beam infrared spectrometer that will measure reflected solar radiation in the near infrared range for context assessment of the surface mineralogy in the vicinity of the ExoMars rover. The instrument will be accommodated on the mast of the rover and will be operated together with the panoramic camera (PanCam), high-resolution camera (HRC). ISEM will study the mineralogical and petrographic composition of the martian surface in the vicinity of the rover, and in combination with the other remote sensing instruments, it will aid in the selection of potential targets for close-up investigations and drilling sites. Of particular scientific interest are water-bearing minerals, such as phyllosilicates, sulfates, carbonates, and minerals indicative of astrobiological potential, such as borates, nitrates, and ammonium-bearing minerals. The instrument has an ∼1° field of view and covers the spectral range between 1.15 and 3.30 μm with a spectral resolution varying from 3.3 nm at 1.15 μm to 28 nm at 3.30 μm. The ISEM optical head is mounted on the mast, and its electronics box is located inside the rover's body. The spectrometer uses an acousto-optic tunable filter and a Peltier-cooled InAs detector. The mass of ISEM is 1.74 kg, including the electronics and harness. The science objectives of the experiment, the instrument design, and operational scenarios are described.

  • 3.
    Martín-Torres, Javier
    et al.
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    Zorzano Mier, Maria-Paz
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    Should We Invest in Martian Brine Research to Reduce Mars Exploration Costs?2017Inngår i: Astrobiology, ISSN 1531-1074, E-ISSN 1557-8070, Vol. 17, nr 1, s. 3-7Artikkel i tidsskrift (Fagfellevurdert)
1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf