Ändra sökning
Avgränsa sökresultatet
1 - 16 av 16
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Bauer, Fredric
    et al.
    Lund University.
    Berglund, Kris
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Hulteberg, Christian
    Lund University.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Mesfun, Sennai
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Nilsson, Robert
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Rova, Ulrika
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Wännström, Sune
    SP Technical Research Institute of Sweden.
    Comparative system analysis of carbon preserving fermentations for biofuels production2013Rapport (Refereegranskat)
    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 2.
    Mesfun, Sennai
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Design of integrated industrial sites based on Kraft pulp and paper mills2014Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 3.
    Mesfun, Sennai
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Process integration to increase woody biomass utilization for energy purposes2016Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Woody biomass is an abundant renewable energy resource in Sweden, and the Swedish government has been promoting research and development programs for the exploitation of this resource as a mean to meet the targets on the reduction of the carbon dioxide emissions from the industrial, energy and transportation sectors. This thesis aims at expanding the knowledge on the efficient utilization of the available woody biomass, so that a larger amount of this renewable resource can be used for energy purposes. The thesis presents a collection of studies following the main two policies that have been identified for the reduction of carbon dioxide emission, i.e. the implementation of measures improving energy conservation and efficiency and a deep decarbonization of the energy sector. Process integration and optimization techniques are applied to forest industry sites in order to improve the resource and energy efficiency, the benefits of the integrated design configurations being evaluated by both technical and economic analyses. The integration of woody biomass with intermittent renewable energy sources is also studied in order to enable a large share of non-fossil sources in the energy mix.The results of the investigations show a significant potential for improving biomass resource utilization in the forest industry sites strictly from the energetic point of view. Optimizing the process integration in sites including Kraft pulp and paper mills and/or sawmills and a dedicated common CHP system can lead to a much greater power generation for the same input biomass and for the same production volume, or to large amounts of excess heat to be used in nearby processes or district heating, or even to the re-routing of part of the input biomass to other conversion processes (e.g. lignin separation and hemicellulose fermentation to produce biofuels). The operational profit of the site is consequently increased, but, when the investment costs are considered, some form of subsidies to the “green” byproducts are usually still required to make the integrated design configurations economically viable. The integration of woody biomass with intermittent renewable energy sources can result in an increased efficiency of hybrid power generation plants (e.g. with concentrated solar thermal collectors), and on a large scale it could facilitate the decarbonization of the energy sector with the fundamental contribution from power-to-X technologies in order to produce chemical fuels from the excess intermittent electricity. These technologies would be clearly incentivized by a carbon tax, but the benefit deriving from the large volumes of captured CO2 that are required for the synthesis of chemical fuels through co-electrolysis should also be taken into account. Keywords: Forest industry, process integration, pinch analysis, HEATSEP method, optimization, CHP system, techno-economic, biorefinery, intermittent renewables.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 4.
    Mesfun, Sennai
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Anderson, Jan-Olof
    Process Energy Engineering, Solvina, SE-42130 Västra Frölunda.
    Umeki, Kentaro
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Toffolo, Andrea
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Integrated SNG Production in a Typical Nordic Sawmill2016Ingår i: Energies, E-ISSN 1996-1073, Vol. 9, nr 5, artikel-id 333.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Advanced biomass-based motor fuels and chemicals are becoming increasingly important to replace fossil energy sources within the coming decades. It is likely that the new biorefineries will evolve mainly from existing forest industry sites, as they already have the required biomass handling infrastructure in place. The main objective of this work is to assess the potential for increasing the profit margin from sawmill byproducts by integrating innovative downstream processes. The focus is on the techno-economic evaluation of an integrated site for biomass-based synthetic natural gas (bio-SNG) production. The option of using the syngas in a biomass-integrated gasification combined cycle (b-IGCC) for the production of electricity (instead of SNG) is also considered for comparison. The process flowsheets that are used to analyze the energy and material balances are modelled in MATLAB and Simulink. A mathematical process integration model of a typical Nordic sawmill is used to analyze the effects on the energy flows in the overall site, as well as to evaluate the site economics. Different plant sizes have been considered in order to assess the economy-of-scale effect. The technical data required as input are collected from the literature and, in some cases, from experiments. The investment cost is evaluated on the basis of conducted studies, third party supplier budget quotations and in-house database information. This paper presents complete material and energy balances of the considered processes and the resulting process economics. Results show that in order for the integrated SNG production to be favored, depending on the sawmill size, a biofuel subsidy in the order of 28–52 €/MWh SNG is required.

  • 5.
    Mesfun, Sennai
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Andersson, Jan Olof
    Process Energy Engineering, Solvina, SE-42130 Västra Frölunda.
    Umeki, Kentaro
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Toffolo, Andrea
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Integrated SNG production in a typical Nordic sawmill2015Ingår i: ECOS 2015: 28th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems , 2015Konferensbidrag (Refereegranskat)
    Abstract [en]

    Advanced biomass based motor fuels and chemicals are becoming increasingly important to replace fossil energy sources within the coming decades. It is likely that the new biorefineries will evolve mainly from existing forest industry sites as they already have the required biomass handling infrastructure in place. The main objective of this work is to assess the potential for increasing the profit margin from sawmill byproducts by integrating innovative downstream processes. The focus is on the techno-economic evaluation of an integrated site for bio-SNG production. The option of using the syngas in a b-IGCC for the production of electricity (instead of SNG) is also considered for comparison. The process flowsheets that are used to analyse the energy and material balances are modelled in MATLAB and Simulink. A mathematical process integration model of a typical Nordic sawmill is used to analyse the effects on the energy flows in the overall site as well as to evaluate the site economics. Different plant sizes have been considered in order to assess the economy-of-scale effect. The technical data required as input are collected from the literature and, in some cases, from experiments. The investment cost is evaluated on the basis of conducted studies, third party supplier budget quotations and in-house database information. This paper presents complete material and energy balances of the considered processes and the resulting process economics.

  • 6.
    Mesfun, Sennai
    et al.
    RISE Research Institutes of Sweden, P.O. Box 5604, 114 86 Stockholm, Sweden.
    Gustafsson, Gabriel
    Bioshare AB, 655 92 Karlstad, Sweden.
    Larsson, Anton
    Bioshare AB, 655 92 Karlstad, Sweden.
    Samavati, Mahrokh
    Department of Energy Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
    Furusjö, Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. RISE Research Institutes of Sweden, P.O. Box 5604, 114 86 Stockholm, Sweden.
    Electrification of Biorefinery Concepts for Improved Productivity—Yield, Economic and GHG Performances2023Ingår i: Energies, E-ISSN 1996-1073, Vol. 16, nr 21, artikel-id 7436Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Demand for biofuels will likely increase, driven by intensifying obligations to decarbonize aviation and maritime sectors. Sustainable biomass is a finite resource, and the forest harvesting level is a topic of ongoing discussions, in relation to biodiversity preservation and the short-term role of forests as carbon sinks. State-of-the-art technologies for converting lignocellulosic feedstock into transportation biofuels achieves a carbon utilization rate ranging from 25% to 50%. Mature technologies like second-generation ethanol and gasification-based processes tend to fall toward the lower end of this spectrum. This study explores how electrification can enhance the carbon efficiency of biorefinery concepts and investigates its impact on energy, economics and greenhouse gas emissions. Results show that electrification increases carbon efficiency from 28% to 123% for gasification processes, from 28% to 45% for second-generation ethanol, and from 50% to 65% for direct liquefaction processes. Biofuels are produced to a cost range 60–140 EUR/MWh-biofuel, depending on the chosen technology pathway, feedstock and electricity prices. Notably, production in electrified biorefineries proves cost-competitive when compared to pure electrofuel (E-fuels) tracks. Depending on the selected technology pathway and the extent of electrification, a reduction in GHG emissions ranging from 75% to 98% is achievable, particularly when powered by a low-carbon electricity mix.

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Mesfun, Sennai
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Grip, Carl-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Toffolo, Andrea
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Kudahettige-Nilsson, Rasika
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Rova, Ulrika
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Black liquor fractionation for biofuels production: A techno-economic assessment2014Ingår i: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976, Vol. 166, s. 508-517Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The hemicelluloses fraction of black liquor is an underutilized resource in many chemical pulp mills. It is possible to extract and separate the lignin and hemicelluloses from the black liquor and use the hemicelluloses for biochemical conversion into biofuels and chemicals. Precipitation of the lignin from the black liquor would consequently decrease the thermal load on the recovery boiler, which is often referred to as a bottleneck for increased pulp production. The objective of this work is to techno-economically evaluate the production of sodium-free lignin as a solid fuel and butanol to be used as fossil gasoline replacement by fractionating black liquor. The hydrolysis and fermentation processes are modeled in Aspen Plus to analyze energy and material balances as well as to evaluate the plant economics. A mathematical model of an existing pulp and paper mill is used to analyze the effects on the energy performance of the mill subprocesses.

  • 8.
    Mesfun, Sennai
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Grip, Carl-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Toffolo, Andrea
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Rova, Ulrika
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriell miljö- och processteknik.
    Techno-economic evaluation of butanol production via black liquor fractionation2013Konferensbidrag (Refereegranskat)
    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 9.
    Mesfun, Sennai
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. International Institute for Applied Systems Analysis (IIASA), Laxenburg.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. International Institute for Applied Systems Analysis (IIASA), Laxenburg.
    Toffolo, Andrea
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lindbergh, Göran
    School of Chemical Science and Engineering, KTH Royal Institute of Technology.
    Lagergren, Carina
    School of Chemical Science and Engineering, KTH, Stockholm.
    Engvall, Klas
    School of Chemical Science and Engineering, KTH, Stockholm.
    Integration of an electrolysis unit for producer gas conditioning in a bio-SNG plant2017Ingår i: 30th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2017, International Measurement Confederation (IMEKO) , 2017Konferensbidrag (Refereegranskat)
    Abstract [en]

    Producer gas from biomass gasification contains impurities like tars, particles, alkali salts and sulfur/nitrogen compounds. As a result a number of process steps are required to condition the producer gas before utilization as a syngas and further upgrading to final chemicals and fuels. Here, we study the concept of using molten carbonate electrolysis cells (MCEC) both to clean and to condition the composition of a raw syngas stream, from biomass gasification, for further upgrading into SNG. A mathematical MCEC model is used to analyze the impact of operational parameters, such as current density, pressure and temperature, on the quality and amount of tailored syngas produced. Investment opportunity is evaluated as an economic indicator of the processes considered. Results indicate that the production of SNG can be boosted by approximately 50% without the need of an additional carbon source, i.e. for the same biomass input as in standalone operation of the GoBiGas plant.

  • 10.
    Mesfun, Sennai
    et al.
    International Institute for Applied Systems Analysis (IIASA), Laxenburg.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Toffolo, Andrea
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lindbergh, Göran
    School of Chemical Science and Engineering, KTH Royal Institute of Technology.
    Lagergren, Carina
    School of Chemical Science and Engineering, KTH, Stockholm.
    Engvall, Klas
    School of Chemical Science and Engineering, KTH, Stockholm.
    Integration of an electrolysis unit for producer gas conditioning in a bio-synthetic natural gas plant2019Ingår i: Journal of energy resources technology, ISSN 0195-0738, E-ISSN 1528-8994, Vol. 141, nr 1, artikel-id 012002Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Producer gas from biomass gasification contains impurities like tars, particles, alkali salts, and sulfur/nitrogen compounds. As a result, a number of process steps are required to condition the producer gas before utilization as a syngas and further upgrading to final chemicals and fuels. Here, we study the concept of using molten carbonate electrolysis cells (MCEC) both to clean and to condition the composition of a raw syngas stream, from biomass gasification, for further upgrading into synthetic natural gas (SNG). A mathematical MCEC model is used to analyze the impact of operational parameters, such as current density, pressure and temperature, on the quality and amount of syngas produced. Internal rate of return (IRR) is evaluated as an economic indicator of the processes considered. Results indicate that, depending on process configuration, the production of SNG can be boosted by approximately 50-60% without the need of an additional carbon source, i.e., for the same biomass input as in standalone operation of the GoBi-Gas plant. Copyright

  • 11.
    Mesfun, Sennai
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Sanchez, Daniel L.
    Carnegie Institution for Science, Department of Global Ecology.
    Leduc, Sylvain
    International Institute for Applied Systems Analysis (IIASA).
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Biberacher, Markus
    Research Studios Austria (RSA), Studio iSPACE.
    Kraxner, Florian
    International Institute for Applied Systems Analysis (IIASA).
    Power-to-gas and power-to-liquid for managing renewable electricity intermittency in the Alpine Region2017Ingår i: Renewable energy, ISSN 0960-1481, E-ISSN 1879-0682, Vol. 107, s. 361-372Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Large-scale deployment of renewable energy sources (RES) plays a central role in reducing CO2 emissions from energy supply systems, but intermittency from solar and wind technologies presents integration challenges. High temperature co-electrolysis of steam and CO2 in power-to-gas (PtG) and power-to-liquid (PtL) configurations could utilize excess intermittent electricity by converting it into chemical fuels. These can then be directly consumed in other sectors, such as transportation and heating, or used as power storage. Here, we investigate the impact of carbon policy and fossil fuel prices on the economic and engineering potential of PtG and PtL systems as storage for intermittent renewable electricity and as a source of low-carbon heating and transportation energy in the Alpine region. We employ a spatially and temporally explicit optimization approach of RES, PtG, PtL and fossil technologies in the electricity, heating, and transportation sectors, using the BeWhere model. Results indicate that large-scale deployment of PtG and PtL technologies for producing chemical fuels from excess intermittent electricity is feasible, particularly when incentivized by carbon prices. Depending on carbon and fossil fuel price, 0.15−15 million tonnes/year of captured CO2 can be used in the synthesis of the chemical fuels, displacing up to 11% of current fossil fuel use in transportation. By providing a physical link between the electricity, transportation, and heating sectors, PtG and PtL technologies can enable greater integration of RES into the energy supply chain globally.

  • 12.
    Mesfun, Sennai
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Toffolo, Andrea
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Integrating the processes of a Kraft pulp and paper mill and its supply chain2014Ingår i: 27th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems: ECOS 2014, Turku, Finland 15 -19 June 2014 / [ed] R. Zevenhoven, Åbo: Åbo Akademi University Press, 2014Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper investigates the possibility of combining different forest industries (a pulp and paper mill, its supply chain, and a wood-pellet plant) into an integrated industrial site in which they share a common heat and power utility. Advanced process integration and optimization techniques are used to study the site from both material and energy viewpoints. An existing pulp and paper mill is used as the site core plant and its pulp and paper production rates are kept fixed as they are in reality, while the other material flow links among the plants are based on the current industrial situation in Sweden. Different scenarios are evaluated in order to reflect the two main objectives that can be pursued (increased electricity production or biomass resource saving) and the two technologies that can be considered for the shared CHP system (boilers and product gas fired gas turbines). The corresponding non-integrated (standalone) configurations are compared to these scenarios to quantify the potential benefits of the integration. Investment opportunity is also calculated for the considered scenarios as an indicator of the economic convenience

  • 13.
    Mesfun, Sennai
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Toffolo, Andrea
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Integrating the processes of a Kraft pulp and paper mill and its supply chain2015Ingår i: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 103, s. 300-310Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper investigates the possibility of combining different forest industries (a pulp and paper mill, its supply chain, and a wood-pellet plant) into an integrated industrial site in which they share a common heat and power utility. Advanced process integration and optimization techniques are used to study the site from both material and energy viewpoints. An existing pulp and paper mill is used as the site core plant and its pulp and paper production rates are kept fixed as they are in reality, while the other material flow links among the plants are based on the current industrial situation in Sweden. Different scenarios are evaluated in order to reflect the two main objectives that can be pursued (increased electricity production or biomass resource saving) and the two technologies that can be considered for the shared CHP system (boilers and product gas fired gas turbines). The corresponding non-integrated (standalone) configurations are compared to these scenarios to quantify the potential benefits of the integration. Investment opportunity is also calculated for the considered scenarios as an indicator of the economic convenience

  • 14.
    Mesfun, Sennai
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Toffolo, Andrea
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Optimization of process integration in a Kraft pulp and paper mill: Evaporation train and CHP system2013Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 107, s. 98-110Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A great interest has been arising about the production of fuels and advanced chemicals from renewable resources such as wooden biomass in the so-called biorefineries. Pulp and paper mills are often seen as the most obvious fundamental module of such industrial sites, because of the common feedstock and the chemical transformations that already occur in the process. In this paper the model of real Kraft pulp and paper mill is developed and optimized from energetic point of view using process integration techniques, in order to assess the potential for energy saving and to establish a starting point for future research on biorefinery sites. Improvements to the configurations of the multi-effect evaporator and of the steam cycle in the CHP system have been introduced, and three different levels of heat integration boundaries have been considered (multi-effect evaporator, mill sub-processes, and total site). Results indicate a significant potential for the decrease in thermal energy requirement and/or the increase in power production for the same pulp and paper production.

  • 15.
    Nilsson, Robert
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Bauer, Fredric
    Chemical Engineering, Lund University.
    Mesfun, Sennai
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Hulteberg, Christian
    Chemical Engineering, Lund University.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Wännström, Sune
    SP Technical Research Institute of Sweden.
    Rova, Ulrika
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Berglund, Kris
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Techno-economics of carbon preserving butanol production using a combined fermentative and catalytic approach2014Ingår i: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976, Vol. 161, s. 263-269Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper presents a novel process for n-butanol production which combines a fermentation consuming carbon dioxide (succinic acid fermentation) with subsequent catalytic reduction steps to add hydrogen to form butanol. Process simulations in Aspen Plus have been the basis for the techno-economic analyses performed. The overall economy for the novel process cannot be justified, as production of succinic acid by fermentation is too costly. Though, succinic acid price is expected to drop drastically in a near future. By fully integrating the succinic acid fermentation with the catalytic conversion the need for costly recovery operations could be reduced. The hybrid process would need 22% less raw material than the butanol fermentation at a succinic acid fermentation yield of 0.7 g/g substrate. Additionally, a carbon dioxide fixation of up to 13 ktonnes could be achieved at a plant with an annual butanol production of 10 ktonnes

  • 16.
    Tanaka, Yasuto
    et al.
    Department of Environmental Science and Technology, Tokyo Institute of Technology, Yokohama.
    Mesfun, Sennai
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Umeki, Kentaro
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Toffolo, Andrea
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Tamura, Yutaka
    Department of Environmental Science and Technology, Tokyo Institute of Technology, Yokohama, Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 Ookayama.
    Yoshikawa, Kunio
    Department of Environmental Science and Technology, Tokyo Institute of Technology, Yokohama, Tokyo Institute of Technology, Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology.
    Thermodynamic performance of a hybrid power generation system using biomass gasification and concentrated solar thermal processes2015Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 160, s. 664-672Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper describes the investigation of a hybrid power production system from biomass and solar energy. This paper suggests integration through heat exchanger network as a useful approach to obtain the synergy between biomass and solar. Biomass is first gasified in a bubbling fluidized bed (BFB) gasifier, and then syngas is used in a gas turbine. Excess heat exists in this sub-system and concentrated solar thermal process (CSTP) while there is a demand of steam for generating gasifying agent. Steam Rankine cycle exploits the heat created by these thermal streams to generate power while satisfying the steam demands. Thermodynamic performance was analyzed by process modelling with a semi-kinetic model of BFB gasifier and pinch analyses. The composition and temperature of gasifying agent showed some effect on the overall efficiency of the system. Higher overall efficiency of the system was achieved at higher temperature and higher O2 fraction in the O2-steam mixture as gasifying agent. The increase in thermal input from CSTP had positive effect on overall efficiency of the hybrid system until thermal input from CSTP becomes dominant against thermal stream related to the gasifier and the gas turbine.

1 - 16 av 16
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf