Ändra sökning
Avgränsa sökresultatet
1 - 23 av 23
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Alanne, Kari
    et al.
    Aalto University.
    Schade, Jutta
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Martinac, Ivo
    Kungliga tekniska högskolan, KTH.
    Saari, Arto J.
    Aalto University.
    Jokisalo, Juha
    Aalto University.
    Kalamees, Targo
    Tallinn University of Technology.
    Economic viability of energy-efficiency measures in educational buildings in Finland2013Ingår i: Advances in Building Energy Research, ISSN 1751-2549, E-ISSN 1756-2201, Vol. 7, nr 1, s. 120-127Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The economic viability of novel energy-efficient design concepts has been evaluated in Finnish educational buildings. The total energy consumption of representative target buildings with each design concept has been found using the whole-building simulation tool IDA Indoor Climate and Energy 4.0, and the financial viability has been assessed using the discounted payback period method. Different thermal insulation and air tightness properties of the building envelope, and different ventilation's heat recovery efficiency assumptions and heat distribution options have been investigated. The results suggest that a prudent attitude should be taken toward the investments in ultra-low-energy designs. Total energy-saving potential of 25-32% can be obtained. The payback periods varied from 15 to more than 40 years. The results can be generalized in cold climates and techno-economic conditions similar to Finland

  • 2.
    Bhattacharjee, Shimantika
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Lidelöw, Sofia
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriellt och hållbart byggande.
    Schade, Jutta
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriellt och hållbart byggande.
    Performance evaluation of a passive house in sub-arctic climate2018Ingår i: 9th International Cold Climate Conference, Kiruna, Sweden. March 12-15, 2018: Sustainable New and Renovated Buildings in Cold Climate, 2018Konferensbidrag (Refereegranskat)
    Abstract [en]

    As the operational energy use in buildings contributes highly to the total energy used and greenhouse gases emitted in the cold climate regions of Europe, buildings which are more energy-efficient and less carbon-intensive during operation are key to meet sustainability objectives in these regions. Yet, research shows that the practice of passive or low-energy buildings in the sub-arctic climate of northern Sweden is comparatively less than in the southern region. Moreover, previous studies did not explicitly examine the performance of low energy buildings in sub-arctic climate in relation to established building energy efficiency standards. Consequently, knowledge regarding the energy performance of low-energy buildings in such climate is limited. Therefore, the aim is to evaluate the performance, in terms of indoor temperature and energy use for heating, domestic hot water and electricity of a new-built passive house titled “Sjunde Huset” in the sub-arctic town of Kiruna. It is Sweden’s northernmost house designed to fulfil the Swedish passive-house criteria of a maximum heat loss factor of 17 W/m2 and a maximum annual energy use of 63 kWh/m2. The implemented passive design strategies include a highly insulated, compact and airtight building envelope with a vestibule, mechanical ventilation with heat recovery and renewable energy production through photovoltaic solar cells. The house is connected to district heating and is equipped with energy-efficient appliances to allow low occupant energy use. Ongoing performance evaluation is based on building simulation and measurements of energy and temperature in different zones of the building. Energy performance deviations between occupied and non-occupied zones are explored through internal heat gain evaluations. The indoor temperature is also evaluated to assess the temperature variations throughout the year. The ongoing research further evaluate a comparative simulated and measured energy analysis of heating, hot water and electricity based on both the international passive house standard and the Swedish passive house criteria “Feby 12”.

  • 3.
    Dehlin, Stefan
    et al.
    NCC.
    Heikkilä, Katarina
    NCC.
    Olofsson, Thomas
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Schade, Jutta
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Racz, Tamas
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Eriksson, Per-Erik
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Innovation och Design.
    Effektive projektering av lågenergihus2011Rapport (Övrigt vetenskapligt)
    Abstract [sv]

    Byggbranschen står inför stora miljö- som affärsmässiga utmaningar med krav på att reducera energiförbrukning och miljöpåverkan. Detta projekt syftar till att bidra medkunskap hur energiprojektering kan effektiviseras vid nyproduktion avlågenergibyggnader där det övergripande målet är att stödja ett långsiktigt hållbart och lönsamt byggande. Studien har genomförts i samverkan mellan byggbransch och akademi genom fallstudier och enkätundersökningen.Resultatet visar på behovet och nyttan av att redan i tidigt planeringsskede utreda konsekvensen av olika alternativ av exempelvis byggnadsutformning ochklimatskärmens tekniska prestanda. Det spelar mindre roll vilket energiberäkningsverktyg man använder om resultatet används för att jämföra olika alternativ med varandra.Skillnaderna i krav och institutionella ramverk vad gäller energiprestanda påverkar också projektering av energieffektiva byggnader. En jämförande studie av hur man hanterar energifrågor från krav till färdig lösning mellan Tyskland och Sverige visar på ett behov av vidareutbildning i energifrågor för arkitekter och ingenjörer i Sverige som kommer in tidigt i byggprocessen. Undersökningen och jämförelsen pekar också mot ett behov av en sammanlänkande funktion, här kallad energisamordnare.Energisamordnarens roll är att föra in energikompetens in i projektet, säkerställa att krav och mål formuleras och hanteras samt aktivt delta i projekteringen för att guida utformningen av byggnaden mot en effektiv och låg energiförbrukning.Vi kan konstatera att det är marknadskrafter och engagemang från byggare, beställare och lokala myndigheter snarare än nationella krav som driverenergieffektivisering framåt i Sverige idag. Det kan emellertid leda till en situation där krav på energieffektivitet blir lokalt satta vilket kan leda till svårigheter för utvecklare av olika typer av byggnadssystem för bostäder och lokaler. Därför är det önskvärt att utvecklingen av byggnadstekniken som skett de senaste åren också följs upp av Boverket i form av krav som ligger i framkant snarare än minimikrav för att förhindra att en flora av lokala krav uppstår som kan verka som "handelshinder" för den fortsatta utvecklingen av det industriella byggandet i Sverige.Vi ser också ett tydligt behov för ökad samverkan och integration för att kunna driva energieffektiviseringen framåt men samtidigt också ett tydligt behov av att utveckla upphandlings- och samverkansformer för att möjliggöra detta. Upphandlingen, till exempel, bör utformas så att lämpliga aktörer väljs utifrån mjuka parametrar och involveras tidigt under projekteringsskedet samt ges ekonomiska incitamentkopplade till projektets mål, ekonomi och tidplan.Projektet har också undersökt hur man skall åstadkomma en mer integreradprojekteringsprocess genom att: Skapa en struktur för att samla, uttrycka och klargöra mål och krav ochutveckla dessa mot funktionskrav och tekniska lösningar. Genomföra en modellbaserad projektering som detaljerar tekniska lösningarallteftersom de utvecklas.Införa beslutsstöd för energifrågor i projektutveckling där produktensprestanda successivt jämförs mot funktionskrav med hjälp av alltmerdetaljerade prestandaanalyser.I projektet har också ett nyutvecklat formellt beslutsstöd exemplifierats där fleraalternativa lösningar kan utvärderas mot olika kriterier (MADM) vilka kanorganiseras och viktas hierarkiskt utifrån projektets mål och krav.I projektets har en prototyp, en så kallad energikonfigurator, utvecklats för atteffektivisera produkt och projektutveckling av s.k. konceptbyggande. Användandet har demonstrerats på NCC:s koncept P303 där man optimerat konfigureringen i produkt och projektutveckling efter både subjektiva och objektiva kriterier som tänkas efterlikna ett visst kundsegment. Hundratals alternativa utformningar kan utvärderas på några minuter i jämförelse med dagar och veckor om samma analyser skulle göras för hand med hjälp av energiberäkningsprogram med manuell inmatning av indata.För att effektivisera projekteringen mot ett energieffektivt byggande rekommenderar projektet att:Man tidigt upphandlar och involverar de viktigaste aktörerna så att man tidigtkan inkludera energiaspekter i utformning av koncept. Beställaren aktivt deltar i kravformuleringen och i analys- ochbeslutsprocessen. Dels för att säkerställa val mot uppställda krav och behovoch dels för att tillgodose de praktiska behov som uppstår i och med enintegrerad och modellbaserad projekteringsprocess. Utse en energisamordnare som skall säkerställa att formulerade energikravoch mål hanteras optimalt för att guida utformningen av byggnaden mot eneffektiv och låg energiförbrukning. Använda en modellbaserad projekteringsprocess för utformning, simuleringoch analys av konceptlösningar gentemot energirelaterade aspekter. Energianalyser som görs i tidigt skede används för att jämföra olikaalternativa utformningar. När detaljeringsnivån ökar bör man användadynamiska verktyg och för att beräkna energiförbrukning och inneklimat pårumsnivå. Man bör tidigt inkludera utformning av t ex ventilation ocheventuella maskinrum då de kan ha stor inverkan på energiförbrukningen. Man utför prestandaanalyser av energi och inneklimat innan man fryserdesign av klimatskärm och VVS så att resultatet kan guida konstruktörer ochinstallatörer i den slutliga utformningen av systemhandlingarna. Man i driftfasen utför en mer automatisk och kontinuerlig jämförelse mellansimulerad och verklig energiförbrukning för att bekräfta att byggnadenuppfyller initiala krav samt för att inhämta data och erfarenheter för vidareoptimering eller andra framtida projektFörändring sker i och med att beställaren möjliggör en miljö som initierar ochstödjer en hög grad av samverkan och integration mellan inblandade aktörer, därtyngden på beslutsfattandet flyttas till ett tidigare skede, där rätt kompetenserkan komma in vid rätt tillfälle och där fokus är på slutprodukten och desslivscykel och inte på avskilda åtaganden

  • 4.
    Jansson, Gustav
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Schade, Jutta
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Olofsson, Thomas
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Requirements management for the design of energy efficient buildings2013Ingår i: Journal of Information Technology in Construction (ITcon), ISSN 1874-4753, E-ISSN 1874-4753, Vol. 18, s. 321-337Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Buildings are designed to fulfil the multiple and, often, contradictory requirements of users, clients and society. Energy aspects are often not considered before the detailed design phase and a systematic way of analysing the energy performance of solutions throughout the design phase is lacking. A suggested framework, based on engineering design theories of requirements management, was applied to a case study of the design of an energy-efficient building in a real construction project. The case study provided qualitative insights into how the proposed framework can contribute to a more structured requirements management of a construction project with a focus on the energy-efficient design of buildings. It can be seen that the proposed framework for requirements management of energy performance provides a structure for designers to consider and apply energy performance criteria in the early design stages and visualize the consequences of alternative design solutions for clients, engineers, contractors and suppliers. The use of a requirements structure enables the transparency of different design alternatives against the established functional requirements of energy performance for the stakeholders in the design process. The use of BIM to support the proposed requirements framework needs to be studied further and connected to national and international construction classification schemas and ontology frameworks.

  • 5.
    Jansson, Gustav
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Schade, Jutta
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Olofsson, Thomas
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser.
    Tarandi, Väino
    Eurostep AB.
    Requirements transformation in construction design2010Ingår i: CIB W78 27th International Conference on Applications of IT in the AEC Industry & Accelerating BIM Research Workshop, 2010Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    Transformation of performance requirements to technical solutions and production parameters is central for architects and engineers in the design process. Construction industry suffers from low efficiency in design, and the information flow creating bottlenecks for the production process. Tracing and managing information through design process needs standards both for requirements and Building Information Models in a life cycle perspective. Structuring functional requirements is of great interest for the construction industry and especially for companies developing industrialised housing system that often have control over the whole manufacturing process. The delivery of a new low-carbon economy in Europe puts pressure on the construction industry to reduce the energy consumption for buildings. Therefore is one national standard for energy requirements tested on a building system and evaluated in an Information and Communication Technology-environment (ICT) that supports the design process for industrialised construction. The result of the research shows that the transformation of requirements to technical solutions needs functionality that supports the design process by using standards for requirements. A rigid building system based on well defined design tasks together with a technical platform, both for spaces and physical elements, work as a backbone for development of ICT support systems. Product Life Cycle Support (PLCS), as a standard that enables flexibility in categorisation of information through the construction design. Keywords: Requirements transformation, energy standards, BIM support, PLCS, construction design

  • 6.
    Levander, Erika
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Schade, Jutta
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Stehn, Lars
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Methodological and other uncertainties in life cycle costing2009Ingår i: Performance Improvement in Construction Management, London and New York: Spon press, 2009, s. 233-246Kapitel i bok, del av antologi (Övrigt vetenskapligt)
  • 7.
    Olofsson, Thomas
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Schade, Jutta
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Meiling, John
    Heikkilä, Katarina
    NCC.
    Dehllin, Stefan
    NCC.
    Benning, Pierre
    Bouygues.
    Schunke, Marcus
    Hochtief.
    Tulke, Jan
    Hochtief.
    Schreyer, Marcus
    Max Bögl.
    Sormunen, Piia
    Granlund.
    Holopainen, Riikka
    Granlund.
    Hirvonen, Tapio
    YIT.
    The InPro Lifecycle Design Framework for Buildings2010Rapport (Övrigt vetenskapligt)
    Abstract [en]

    On average, by the time 1% of project costs are spent, roughly 70% of the lifecycle costof the building has been committed indicating that benefits of integration are largest inthe early phases of a project. The building shape, selected materials, structural system,internal room distribution, and building services systems are some of the most importantfactors that influence the costs of operation and upgrading throughout the lifecycle.The main goal of the InPro project is to shift focus from the detail design to the earlyphase where the majority of the decisions are taken that influence the total performanceof the building. Therefore, the work in task 2.4 has been aimed at developing an integratedformalized iterative lifecycle design where project goals can be matched againstkey performance indictors (KPI:s) in the design process. The methodology used is acombination of literature reviews; interviews with clients, contractors and energy consultants;the participants own experience; workshops and project meetings within theInPro consortium and the development of demonstration scenarios.The building life cycle treated in this report has been limited to the early design includingmainly the operational aspects on costs and environment. The effect of repair, replacementand demolishing has not been treated.The result of task 2.4 is the InPro life cycle design framework consisting of: The InPro Smart decision making where project goals and functional needs aremapped to building performance requirements. The InPro stage/gate design where the information maturity is adapted to theproject specific decision making process. The InPro lifecycle maturity levels to guide the project management using theInPro design framework. Change management procedures are applied on approvedmaturity levels in the Open Information Platform (OIP). The InPro workflow process between two decision quality gates containing performancerequirement processing, developing a design strategy, concurrentdesign and analysis process and information quality assurance.The InPro early design framework is demonstrated in three design scenarios with focuson energy performance, environmental assessment and operation.The following recommendations are made regarding the investigated life cycle aspect: Analysis of energy and indoor climate related KPI:s and comparison with performancerequirements can be made when the OIP maturity is such that indoorclimate simulation is possible to perform on room level. Energy performance analyses should be conducted before the structural andHVAC system design is finalized since the result will guide the structural andbuilding service designer in the selection of structural system, the buildingshell and the HVAC system. Training and commitment of the end users are also needed to motivate changetowards a more sustainability and energy saving behaviour of the users byproviding feedback and user-friendly control of building installations. The procedure for environmental evaluation is based on the LCA method andcomplemented with a check of the occurrence of hazardous chemical substances. Requirements on environmental performance should be clearly defined foreach project with respect to the client’s values.Report – The InPro Lifecycle Design Framework for Buildings ■ January 2010 6/164 Objects in the models need to be complemented with information that can belinked to cost information in building parts libraries to speed-up the cost estimationsprocess. However, the model based cost estimation covers only a partof the total Life Cycle Cost and need to be complemented with other investmentsand operational aspects not directly linked to the models.The following important actors/roles/competences have been identified in the earlystages of the InPro Life Cycle design framework: It is recommended that the client is actively involved not only via briefing sessionand decision-making at decision making quality gates, but also in the designthrough the open information platform giving access to monitor and interactdirectly with the design team throughout the design process. Energy and environmental analyst should actively take part in the design process,given the opportunity to affect the building design in the early phases of aproject. This will guide architects, structural engineers and HVAC designers ina more sustainable direction. The Facility and Maintenance specialist plays an important role bridging thegap between design and construction and operations. Their knowledge and experienceprovide valuable contribution in the early design process of a buildingslife cycle performance. A new role as project information manager is proposed handling model aggregationand the quality assurance of the information stored in the OIP. In a shared information environment like InPro the responsible and risk involvedwith quantity surveying must be resolved. It is suggested that onerole/actor is dedicated to the responsibility of quantity surveying and to updatequantities in the OIP when new design models are created or changed. Towork well, the risk as well as the quantity information needs to be sharedamong project participants.Regarding the implementation of the InPro Life Cycle framework the following steps arerecommended: The visualisation step: The participating organisation need to be trained inmodel based working routines where different design disciplines 3D models areaggregated in digital mock-ups. Gains in clarification of project objectives forstakeholders and resolving of coordination issues between different design disciplinescan justify the relative inexpensive investments made on project level. The integration step rely on computer based methods to exchange data amongdifferent modelling and analysis application either using standard formats suchas IFC (International Foundation Classes) or propriety formats. Lessons fromthe manufacturing domain has shown that an integrated concurrent engineeringdesign process need to be stage/gated and supported by central repositoryof shared information under change management control. The integration stepwill be more expensive to implement and requires long term relations betweenparticipating organisations (over several projects).

  • 8.
    Schade, Jutta
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    A design process perspective on the energy performance of buildings2013Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    From a sustainable development perspective, buildings should be designed to be as energy-efficient as possible, as the contribution of buildings to total energy consumption has steadily increased, reaching between 20% and 40% in the developed countries. One of the main challenges for achieving this goal is to develop more cost-effective systems and processes for energy renovation and modernising of the building stock of Europe. This challenge is addressed in this thesis. The research presented herein has had the overall purpose to identify and explore obstacles in the design process of constructing more energy-efficient buildings. Three research questions have guided the research work: (1) How can life cycle cost be used to predict the cost benefits of energy efficient buildings?; (2) How can the handling of energy performance requirements in the design process for buildings be improved?; (3) How do client requirements, political governance and regulations affect the design of energy performance in buildings? The research is based on literature reviews, interviews and surveys, as well as case and computational studies. A computational study was performed with three different building types situated in Finland using three different energysaving design concepts for each building. Energy consumption and construction costs were analysed for each case and the financial viability was analysed using the discounted payback method. Individual interviews were carried out to determine to what extent life cycle cost calculations are used in the construction sector and how energy performance is taken into account in model-based design processes for buildings. A decision-making framework and an axiomatic design model for a performance-based design process was then developed and the conceptual model was compared with a real case of low energy design in Sweden. Finally, a survey explored energy conservation strategies in the design of buildings in Germany and Sweden and a longitudinal investigation of key policy instrument regarding energy conservation in Germany and Sweden was conducted to support the main findings of the survey. The main results of the research work show that: * There is no evidence that the design of energy performance is considered differently in the design process for buildings in Sweden and Germany, even if regulations and building codes differ between the two countries. However, the somewhat steeper reduction in space heating in Germany compared with Sweden could be due to the stricter regulation in the building codes in Germany over the last decade. * The transparency of the design and the associated decision-making about energy performance can be improved by using the requirement management model developed, which is based on axiomatic principles and the proposed decision-making framework for evaluating, structuring and detailing the requirements from the conceptual to the detailed design stages. * Energy performance design can give cost benefits over a specific time for a building, as measured by the resulting life cycle costs. In general, life cycle cost analysis can be a tool for evaluating cost benefits over time and provide support for the decision-makers, but the challenges and uncertainties of its use have to be taken into account in the decision-making process. To conclude, the "energy gap" between regulations and what is technologically possible can be reduced to a certain extent by facilitating the energy design process with a performance-based design process and decision-making tools that support the evaluation of life cycle performance. However, it seems that regulation is a more important driver for the development of technology for low energy housing than market forces so the regulatory limit should therefore be set with respect to what is possible and not with respect to current practice.

  • 9.
    Schade, Jutta
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Energy simulation and life cycle costs: estimation of a building's performance in the early design phase2009Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Sustainable development and the protection of the environment are key issues in our society today. The building stock in Europe accounts for over 40% of the final energy consumption, CO2 emissions and generation of waste. A large part of the life cycle performance is determined early. Investigations show that when 1% of the project costs are spent, roughly 70% of the lifecycle cost of the building has been committed indicating that decisions taken early greatly affect the life cycle performance. The building's shape, selected materials, structural system, internal room distribution, and building services systems are some of the most important factors that influence the environmental and energy performance of a building throughout its lifecycle.The objective of the conducted research was to investigate what kind of energy analyses are possible to carry out in the early design phase to give the decision makers a more holistic view of the energy performance of a building over its life cycle. Three research questions have guided the research work; (1) What types of energy simulations are possible to make in the early design phase? (2) How reliable are early energy estimations compared to results when detailed models are available? (3) How does energy consumption affect the life cycle cost of a building?The research work is based on literature reviews, a theoretical framework for model based design of life cycle aspects in general and energy performance in particular developed in the European Union sixth framework project InPro. The study includes a number of energy performance calculations at different levels of information maturity in the early design phase. Different energy simulation programs were used for this purpose. The study was performed for an existing building where design parameters like window area, building envelope and indoor climate been changed. In total 28 cases were analysed using four different energy analysis tools at three levels of information maturity. The resulting life cycle costs were also estimated for the different cases with varying rates of interest and forecasts of the energy price. The result of this study shows that energy calculations usable for design decision can be made at different levels of information maturity. Depending on the maturity level more or less detailed design information is available which influences the estimated energy consumption. Therefore early estimations when the information maturity is low should only be used to compare different design alternatives at the same design stage. However, the result shows that these early estimations can give a clear tendency guiding the design in a more energy efficient direction. When the information maturity is higher and indoor climate simulations are possible to make at room level, the result gets more accurate. However, the use of more sophisticated energy simulations tools is time consuming and error prone since the amount of input data needed is much higher. This calls for better integration between the design and energy analysis especially when more advanced energy simulations are performed. The resulting life cycle costs of the different cases are strongly affected by the estimated energy consumption, the selected real rate of interest, the forecast of energy prices as well as the discount time.The conclusion of this study is that energy calculations are usable for the decision making of design alternatives in the early design phase. Also, life cycle cost estimates can support the decision makers in the analysis of different financial scenarios.

  • 10.
    Schade, Jutta
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Life cycle cost calculation models for buildings2007Ingår i: Proceedings of 4th Nordic Conference on Construction Economics and Organisation: Development Processes in Construction Mangement / [ed] Brian Atkin; Jan Borgbrant, Luleå: Luleå tekniska universitet, 2007, s. 321-329Konferensbidrag (Refereegranskat)
    Abstract [en]

    Most commonly, production cost is the main cost factor in construction and is often set to the minimum, which does not necessarily improve the lifetime performance of buildings. However, a higher production cost might decrease total life cycle cost (LCC). It is important, therefore, to show the construction client in the early design phase the relationship between design choices and the resulting lifetime cost. Today, LCC calculation is used extensively for industrial products to minimise production cost and increase profit. Clearly, there are significant differences between an industrial product and a building from the life cycle perspective. The main differences are the life of a building and the lack of industrialisation in the building process, especially during construction. These factors make calculating LCC for a building difficult early in the design process. This paper presents a state of the art analysis in the area of LCC for construction. It offers a structural overview of theoretical economic methods for LCC analyses and their restrictions as described in the literature. The paper also reveals the primary data which are required to carry out a LCC analysis and discusses limitations in the application of life cycle costing from the client's perspective.

  • 11.
    Schade, Jutta
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriellt och hållbart byggande.
    Projekt: Nya Giron2011Övrigt (Övrig (populärvetenskap, debatt, mm))
    Abstract [sv]

    Nya Giron är ett EU finansierat forsknings- och utvecklingsprogram för hållbart samhällsbyggande med specifik inriktning på samhällsomvandlingen i Kiruna. Projektets fokus ligger på infrastruktur och bebyggelse där tankar som ett gott liv, hållbar tillväxt och attraktiva livsmiljöer är inkluderade.I arbetet med stadsomvandlingen har Kiruna kommun en vision om att skapa en ny mönsterstad på liknande sätt som stadens grundare Hjalmar Lundbohm. Nya Giron har som avsikt att tillsammans med kommunen och dess invånare utveckla lösningar där miljövänlig teknik integreras med sociala processer till ny bebyggelse och infrastruktur. Tillsammans vill vi skapa en hållbar stad där invånarna trivs och näringslivet har en möjlighet att frodas.Projektet genomförs som ett tvärvetenskapligt samarbete mellan sex forskargrupper på Luleå Tekniska Universitet; Arkitektur, Byggproduktion, Energiteknik, Industriell produktionsmiljö, Stadens vatten/VA-teknik och träbyggnad.

  • 12.
    Schade, Jutta
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Goldkuhl, Lena
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Sjunde huset i Kiruna2016Ingår i: Husbyggaren, ISSN 0018-7968, nr 4, s. 29-31Artikel i tidskrift (Övrig (populärvetenskap, debatt, mm))
  • 13.
    Schade, Jutta
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriellt och hållbart byggande.
    Olofsson, Thomas
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriellt och hållbart byggande.
    Project: InPro2011Övrigt (Övrig (populärvetenskap, debatt, mm))
    Abstract [sv]

    InPro - Open Information Environment for Knowledge-based Collaborative Processes throughout the Lifecycle of a Building - was an industry-led collaborative research project aiming at the early design phase of a building. It was part-funded by the European Commission under framework program 6. The project started 1 September 2006 and ended 30 November 2010. Twenty partners were involved, representing eight countries across Europe.

  • 14.
    Schade, Jutta
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Olofsson, Thomas
    Schreyer, Marcus
    A model-based design approach with the focus on energy2009Ingår i: Proceedings of the 5th Nordic Conference om Construction Economics and Organisation, Reykjavik: University of Reykjavik , 2009, Vol. 1, s. 168-184Konferensbidrag (Refereegranskat)
    Abstract [en]

    The purpose of the research is to investigate how a model-based design approach can facilitate the decision-making process in the early design phase. The construction client is in a key position to affect the outcome of a construction project by proper decision making during the design. Different design options can rapidly be analysed to assist the client in making informed decisions in the early design phase. The research approach is based on a theoretical framework for a model based design, decision-making methods and the case of a property in Finland in the early design phase with focus on energy performance. The result of this study is to provide guidelines on how a model-based design process in the early design phase can help decision-makers influence the energy performance of a building. The framework is believed to be generally applicable for decision-making in the design process.

  • 15.
    Schade, Jutta
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Olofsson, Thomas
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Schreyer, Marcus
    Max Bögl Group, Neumarkt.
    Decision-making in a model-based design process2011Ingår i: Construction Management and Economics, ISSN 0144-6193, E-ISSN 1466-433X, Vol. 29, nr 4, s. 371-382Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Decisions early in the design process have a big impact on the life cycle performance of a building. The outcome of a construction project can be improved if different design options can rapidly be analysed to assist the client and design team in making informed decisions in the design process. A model-based design approach can facilitate the decision-making process if the design alternatives' performances can be evaluated and compared. A decision-making framework using a performance-based design process in the early design phase is proposed. It is developed to support decision-makers to take informed decisions regarding the life cycle performance of a building. A scenario is developed in order to demonstrate the proposed framework of evaluating the different design alternatives' energy performance. The framework is applicable to decision-making in a structured design process, where design alternatives consisting of both objective and subjective evaluation criteria can be evaluated.

  • 16.
    Schade, Jutta
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser.
    Shadram, Farshid
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser.
    The energy performance of green roof in sub-arctic climate2018Ingår i: Cold Climate HVAC Conference 2018: Sustainable Buildings in Cold Climates / [ed] Dennis Johansson, Hans Bagge, Åsa Wahlström, Springer, 2018, Vol. 18, s. pp135-143, artikel-id https://doi.org/10.1007/978-3-030-00662-4_12Konferensbidrag (Refereegranskat)
    Abstract [en]

    Abstract. Green roofs are complex technology systems, adopting a vegetation layer on the outermost surface of the building shell. A proper design implement environmental and energy benefits. Green roof are aimed to reduce roof temperature and thus the summer solar gains, without worsening the winter energy performance. Most studies evaluating green roof performance have been conducted in warmer climates. There are very limited studies of green roofs in cold climate. Some research has investigated the thermal effect of the snow layer on green roof. But no study has so far evaluated the energy performance of green roof in sub-arctic climate. This study evaluates the heat flow and thermal effect on a green roof situated on a passive house building in the sub-arctic town Kiruna, Sweden for a period from 25th of October – 4th of January. The ongoing measurements of temperature and heat flux is done on an extensive green roof and compared to the same roof covered solely by a roofing felt layer. The fluctuation in temperature was consistently higher for the roof with the roofing felt layer than for the green roof. But the surface temperature of both roofs was getting more and more align as the roofs are covered by snow during November and December. However during December month the green roof had a higher heat flux out of the building compared to the black roof.

  • 17.
    Schade, Jutta
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Shadram, Farshid
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    The energy performance of green roof in sub-arctic climate2018Ingår i: Springer Proceedings in Energy: Cold Climate HVAC 2018 - Sustainable Buildings in Cold Climates, Springer Publishing Company, 2018Konferensbidrag (Refereegranskat)
    Abstract [en]

    Abstract. Green roofs are complex technology systems, adopting a vegetation layer on the outermost surface of the building shell. A proper design implement environmental and energy benefits. Green roof are aimed to reduce roof tem-perature and thus the summer solar gains, without worsening the winter energy performance. Most studies evaluating green roof performance have been con-ducted in warmer climates. There are very limited studies of green roofs in cold climate. Some research has investigated the thermal effect of the snow layer on green roof. But no study has so far evaluated the energy performance of green roof in sub-arctic climate. This study evaluates the heat flow and thermal effect on a green roof situated on a passive house building in the sub-arctic town Ki-runa, Sweden for a period from 25th of October – 4th of January. The ongoing measurements of temperature and heat flux is done on an extensive green roof and compared to the same roof covered solely by a roofing felt layer. The fluc-tuation in temperature was consistently higher for the roof with the roofing felt layer than for the green roof. But the surface temperature of both roofs was get-ting more and more align as the roofs are covered by snow during November and December. However during December month the green roof had a higher heat flux out of the building compared to the black roof.

  • 18.
    Schade, Jutta
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Wallström, Peter
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Olofsson, Thomas
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Lagerqvist, Ove
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    A comparative study of the design and construction process of energy efficient buildings in Germany and Sweden2013Ingår i: Energy Policy, ISSN 0301-4215, E-ISSN 1873-6777, Vol. 58, s. 28-37Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Reducing the energy consumption of buildings is an important goal for the European Union. However, it is therefore of interest to investigate how different member states address these goals. Countries like Sweden and Germany have developed different strategies for energy conservation within the building sector. A longitudinal comparison between implemented energy conservation key policy instruments in Sweden and Germany and a survey regarding the management of energy requirements in the building process shows that:– No evidence is found that energy consumption is of great importance for producing competitive offers, either for Swedish or German clients.– The Swedish market-driven policy has not been as successful as the German regulation policy in decreasing the energy consumption of new buildings.– Building standards and regulations regarding energy performance affects how professionals are educated and the way energy requirements and demands are managed throughout the building process.In conclusion, the client's demand will govern the development of energy efficient buildings. Therefore, in order to use market-driven policies, the desired parameters must be of concern for the customer to influence the majority of building projects to be more energy efficient than is specified in national standards and regulations.

  • 19.
    Shadram, Farshid
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriellt och hållbart byggande.
    Johansson, Tim
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriellt och hållbart byggande.
    Lu, Weizhuo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriellt och hållbart byggande.
    Schade, Jutta
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriellt och hållbart byggande.
    Olofsson, Thomas
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriellt och hållbart byggande.
    An integrated BIM-based framework for minimizing embodied energy during building design2016Ingår i: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 128, s. 592-604Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Assessment of the embodied energy associated with the production and transportation of materials during the design phase of building provides great potential to profoundly affect the building’s energy use and sustainability performance. While Building Information Modeling (BIM) gives opportunities to incorporate sustainability performance indicators in the building design process, it lacks interoperability with the conventional Life Cycle Assessment (LCA) tools used to analyse the environmental footprints of materials in building design. Additionally, many LCA tools use databases based on industry-average values and thus cannot account for differences in the embodied impacts of specific materials from individual suppliers. To address these issues, this paper presents a framework that supports design decisions and enables assessment of the embodied energy associated with building materials supply chain based on suppliers’ Environmental Product Declarations (EPDs). The framework also integrates Extract Transform Load (ETL) technology into the BIM to ensure BIM-LCA interoperability, enabling an automated or semi-automated assessment process. The applicability of the framework is tested by developing a prototype and using it in a case study, which shows that a building’s energy use and carbon footprint can be significantly reduced during the design phase by accounting the impact of individual material in the supply chain.

  • 20.
    Shadram, Farshid
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriellt och hållbart byggande.
    Mukkavaara, Jani
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriellt och hållbart byggande.
    Schade, Jutta
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriellt och hållbart byggande.
    Sandberg, Marcus
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriellt och hållbart byggande.
    Trade-off optimization of embodied versus operational carbon impact for insulation and window to wall ratio design choices: A case study2018Konferensbidrag (Refereegranskat)
  • 21.
    Shadram, Farshid
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriellt och hållbart byggande.
    Mukkavaara, Jani
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriellt och hållbart byggande.
    Schade, Jutta
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Sandberg, Marcus
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriellt och hållbart byggande.
    Olofsson, Thomas
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriellt och hållbart byggande.
    A BIM-Based Method for Analyzing the Trade-Off between Embodied and Operational Energy2017Ingår i: ICCREM 2016: BIM Application and Offsite Construction - Proceedings of the 2016 International Conference on Construction and Real Estate Management 2016 / [ed] Wang Y.,Al-Hussein M.,Shen G.Q.P.,Zhu Y., Reston, VA: American Society of Civil Engineers (ASCE), 2017, s. 59--70Konferensbidrag (Refereegranskat)
    Abstract [en]

    Research indicates that the operational energy and the embodied energy caused by production of building materials off-site (i.e., "cradle-to-gate" embodied energy) contribute to the major part of a building's total energy use, with roughly equal proportions. In addition, it has been reported that there is a trade-off between embodied-and operational energy which is mainly due to the use of additional materials with higher embodied energy and utilization of new appliances for construction of the building (or building of interest). Hence, application of sustainable strategies in early stages of the design phase, which enables evaluation of different design scenarios in terms of materials and systems, can provide a great scope to launch an optimization in the trade-off between embodied-versus operational energy. With respect to early stages of the design phase, Building information modeling (BIM) has become an applicable platform where its recent developments can provide interoperability with energy performance simulation (EPS) tools that enable assessment of the operational energy. However, existing BIM software generally lacks interoperability with conventional life cycle assessment (LCA) tools that are the main means for assessment of the embodied energy. Consequently, embodied energy assessment is often performed when the design has either been accomplished or developed to a relatively detailed level where there is less scope to investigate different design decisions for analyzing the trade-off between embodied-and operational energy. To overcome this obstacle, this paper presents a BIM-based method which strives to reduce the building's life cycle energy (LCE) use by accounting the trade-off between embodied-and operational energy at early stages of the design phase. The method is then exemplified by using an energy-efficient building case, demonstrating the applicability of the method in reducing the building's total energy use and also highlighting the areas where further development is required to address in future research

  • 22.
    Shadram, Farshid
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Sandberg, Marcus
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Schade, Jutta
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Olofsson, Thomas
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    BIM-based environmental assessment in the building design process2014Konferensbidrag (Refereegranskat)
    Abstract [en]

    Today, climate change is an issue of great concern. In addition, the building sector is considered to be one of the major energy users causing considerable amount of greenhouse gas emissions. Although, energy-efficient buildings are built today that use low amount of energy during operation, the embedded energy from construction and production of building material can still be relatively high. This paper focuses on the application of Building Information Modeling (BIM) using Environmental Product Declaration (EPD) to assess the environmental impacts from building materials and production to enable the designers to make environmentally friendlier decisions. Toward this approach, we propose a model which is examined in a case study of a roof structure on a commercial building which was constructed by off-site prefabricated roof-elements. As a result, the feasibility of the proposed model is appreciated in the assessment of the carbon footprint and embodied energy of the building materials and components. The proposed model needs to be further developed regarding the specification of the materials and components to make the information exchange between the BIM model and EPD in the environmental assessment of the building design more practicable.

  • 23.
    Sormunen, Piia
    et al.
    Granlund.
    Holopainen, Riikka
    Granlund.
    Jokela, Markku
    Granlund.
    Laine, Tuomas
    Granlund.
    Dehlin, Stefan
    NCC.
    Heikkilä, Katarina
    NCC.
    Nummelin, Olli
    YIT.
    Hirvonen, Tapio
    YIT.
    Sandesten, Stefan
    Client Forum.
    Friestedt, Sven
    Client Forum.
    Benning, Pierre
    Bouygues.
    Åberg, Peter
    White.
    Olofsson, Thomas
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Schade, Jutta
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Matthyssen, Arne
    J-CDS.
    Gerene, Sam
    J-CDS.
    Fijneman, Martin
    J-CDS.
    Bluyssen, Philomena M.
    TNO.
    Capturing stakeholder values: Stakeholder values, stakeholder preferences and requirements for the life cycle design process2009Rapport (Övrigt vetenskapligt)
    Abstract [en]

    The objective of Task 2.3 was to create a framework for capturing the values of different stakeholders over the life cycle of a building. The framework should work as a method for capturing goals and preferences of all stakeholders and add value to the client and constructor as well as to the society and citizens. Another goal was to create a list of value groups, values, requirements and parameters to serve as a checklist for value mapping in a design project. The framework acts as an incentive for model-based working to enable evaluation of design performance and open collaboration between all stakeholders. It presents a process during which the needs and preferences that add value to society/citizens, clients/users, and the construction sector over the life cycle of a building are captured. These stakeholder values for a facility and process are translated into requirements and attributes for the specific business case to give a clear set of design targets for the life cycle design process. In the purposes of this task, briefing is proposed as the main procedure for identifying and capturing stakeholder values. Briefing is the process in which the client’s needs, wishes and ambitions are identified, expressed and clarified in the building process. The briefing process is an integral part of the design process. It is iterative and moves from the general to the particular. Strategic briefing deals with the business case, stakeholders and project goals. Operational briefing concerns functional requirements derived from the strategic briefing. Technical briefing specifies in technical terms the consequences of the functional requirements. The briefing methods and its tools must support a top-down systems approach. The Concurrent Design Method, originally a space-born design methodology developed and used by the European Space Agency (ESA), is chosen to support the briefing process of the framework. This method ensures collaborative work where the various stakeholders interact and influence each other’s values and proposals when in sessions concurrently working on the same IT-based platform. The design work is done in collocated sessions with all stakeholders involved and present, creating an integrated design and enabling good communication and exchange of information between team members. The concurrent design method was applied by the task group in three one-day workshops with the Swedish Post head office in Stockholm as the case building. The sessions resulted in a list of all the value groups, values, requirements and parameters that were exchanged, discussed and added during the sessions. From this list, an exemplary list of value groups, values, requirements and parameters was created. This set of generalized values can be recommended to serve as a checklist for value mapping in further projects. The work in the concurrent design sessions is based on assumptions in the briefs and the results of the sessions are fed back into the briefs and can even affect the initial goals. The method was found to be very supportive for the briefing process. Because the method is iterative, it can successively contribute to a mutual, better understanding of the total project. The task group can therefore recommend it for application as a tool for briefing support. To test the created framework two studies were made: one to proof that the framework efficiently captures the stakeholder values and one to to demonstrate the detection of contradictory goals and values. The results of these studies are presented in Part 2 of this report. The work done in T2.3 is the first part of the global life cycle process, which goes from the capture of the client’s values to the evaluation of the performance of the project. The results of Task 2.3 will be further used in InPro Task 2.4 “Life Cycle Design Processes” and Task 1.3 “Key Performance Indicators”. Lists of requirements and parameters were delivered for the different life cycle processes (LCD) of InPro Task 2.4: energy performance, facility management & maintenance, enviReport – Capturing Stakeholder Values, Values, Preferences and Requirements ■ May 2009 5/45 ronmental performance & materials, cost management and project planning. These lists were placed in quality gates of different life cycle processes in order to verify and evaluate the implementation of the stakeholder values. Task 1.3 will use proposed parameters as performance indicators. The goal of the Deliverable D10 (An Evaluation Framework for Early Design based on Key Performance Indicators) is to detail the method to highlight the Key Performance Indicators, i.e. to classify and prioritise the more relevant parameters, in order to evaluate the performance of the design and of the building, and in order to compare the client’s expected requirements with the real life cycle processes. These KPI give common and reliable hypothesis, with which each actor can carry out its design, and which help taking decision with an accurate quality level to reach.

1 - 23 av 23
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf