Ändra sökning
Avgränsa sökresultatet
12 1 - 50 av 77
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Andersson, Jim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Furusjö, Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Landälv, Ingvar
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Co-gasification of black liquor and pyrolysis oil: Evaluation of blend ratios and methanol production capacities2016Ingår i: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 110, s. 240-248Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The main aim of this study is to investigate integrated methanol production via co-gasification of black liquor (BL) and pyrolysis oil (PO), at Swedish pulp mills. The objectives are to evaluate techno-economically different blends ratios for different pulp mill capacities. Furthermore, the future methanol production potential in Sweden and overall system consequences of large-scale implementation of PO/BL co-gasification are also assessed.It is concluded that gasification of pure BL and PO/BL blends up to 50% results in significantly lower production costs than what can be achieved by gasification of unblended PO. Co-gasification with 20–50% oil addition would be the most advantageous solution based on IRR for integrated biofuel plants in small pulp mills (200 kADt/y), whilst pure black liquor gasification (BLG) will be the most advantageous alternative for larger pulp mills. For pulp mill sizes between 300 and 600 kADt/y, it is also concluded that a feasible methanol production can be achieved at a methanol market price below 100 €/MW h, for production capacities ranging between 0.9 and 1.6 TW h/y for pure BLG, and between 1.2 and 6.5 TW h/y for PO/BL co-gasification. This study also shows that by introducing PO/BL co-gasification, fewer pulp mills would need to be converted to biofuel plants than with pure BLG, to meet a certain biofuel demand for a region. Due to the technical as well as organizational complexity of the integration this may prove beneficial, and could also potentially lower the total investment requirement to meet the total biofuel demand in the system. The main conclusion is that PO/BL co-gasification is a technically and economically attractive production route for production biomethanol.

  • 2.
    Andersson, Jim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Techno-economic analysis of ammonia production via integrated biomass gasification2014Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 130, nr S1, s. 484-490Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ammonia (NH3) can be produced by synthesis of nitrogen and hydrogen in the Haber–Bosch process, where the economic challenge is the hydrogen production. Currently, substantial amounts of greenhouse gases are emitted from the ammonia industry since the hydrogen production is almost exclusively based on fossil feedstocks. Hydrogen produced via gasification of lignocellulosic biomass is a more environmentally friendly alternative, but the economic performance is critical. The main objective of this work was to perform a techno-economic evaluation of ammonia production via integrated biomass gasification in an existing pulp and paper mill. The results were compared with a stand-alone production case to find potential technical and economic benefits deriving from the integration. The biomass gasifier and the subsequent NH3 production were modelled using the commercial software Aspen Plus. A process integration model based on Mixed Integer Linear Programming (MILP) was used to analyze the effects on the overall energy system of the pulp mill. Important modelling constraints were to maintain the pulp production and the steam balance of the mill. The results showed that the process economics and energy performance are favourable for the integrated case compared to stand-alone production. The main conclusion was however that a rather high NH3 selling price is required to make both production cases economically feasible.

  • 3.
    Andersson, Jim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Techno-economic analysis of ammonia production via integrated biomass gasification2013Konferensbidrag (Refereegranskat)
    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 4.
    Andersson, Jim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Furusjö, Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Co-gasification of pyrolysis oil and black liquor for methanol production2013Konferensbidrag (Refereegranskat)
    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 5.
    Andersson, Jim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Furusjö, Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Landälv, Ingvar
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Co-gasification of pyrolysis oil and black liquor for methanol production2015Ingår i: Fuel, ISSN 0016-2361, E-ISSN 1873-7153, Vol. 158, s. 451-459Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    One alternative to reduce the motor fuel production cost and improve the operational flexibility of a black liquor gasification (BLG) plant is to add pyrolysis oil to the black liquor feed and co-gasify the blend. The objective of this study was to investigate techno-economically the possibility to increase methanol production at a pulp mill via co-gasification of pyrolysis oil and black liquor. Gasifying a blend consisting of 50% pyrolysis oil and 50% black liquor on a wet mass basis increases the methanol production by more than 250%, compared to gasifying the available black liquor only. Co-gasification would add extra revenues per produced unit of methanol (IRR > 15%) compared to methanol from unblended BLG (IRR 13%) and be an attractive investment opportunity when the price for pyrolysis oil is less than 70 €/MW h. The economic evaluation was based on a first plant estimate with no investment credit for the recovery boiler and a methanol product value volumetric equivalent to conventional ethanol, both these conditions will not applicable when the technology has been fully commercialized.

  • 6.
    Andersson, Jim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Furusjö, Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Landälv, Ingvar
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Co-gasification of pyrolysis oil and black liquor: Optimal feedstock mix for different raw material cost scenarios2014Konferensbidrag (Refereegranskat)
    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 7.
    Andersson, Jim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Malek, Laura
    Lund Universitet.
    Hulteberg, Christian
    Lund Universitet.
    Pettersson, Karin
    Chalmers University of Technology.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    System studies on biofuel production via integrated biomass gasification2013Rapport (Refereegranskat)
    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 8.
    Andersson, Jim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Marklund, Magnus
    Energy Technology Centre, Piteå.
    Methanol production via pressurized entrained flow biomass gasification: Techno-economic comparison of integrated vs. stand-alone production2014Ingår i: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 64, s. 256-268Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The main objective with this work was to investigate techno-economically the opportunity for integrated gasification-based biomass-to-methanol production in an existing chemical pulp and paper mill. Three different system configurations using the pressurized entrained flow biomass gasification (PEBG) technology were studied, one stand-alone plant, one where the bark boiler in the mill was replaced by a PEBG unit and one with a co-integration of a black liquor gasifier operated in parallel with a PEBG unit. The cases were analysed in terms of overall energy efficiency (calculated as electricity-equivalents) and process economics. The economics was assessed under the current as well as possible future energy market conditions. An economic policy support was found to be necessary to make the methanol production competitive under all market scenarios. In a future energy market, integrating a PEBG unit to replace the bark boiler was the most beneficial case from an economic point of view. In this case the methanol production cost was reduced in the range of 11–18 Euro per MWh compared to the stand-alone case. The overall plant efficiency increased approximately 7%-units compared to the original operation of the mill and the non-integrated stand-alone case. In the case with co-integration of the two parallel gasifiers, an equal increase of the system efficiency was achieved, but the economic benefit was not as apparent. Under similar conditions as the current market and when methanol was sold to replace fossil gasoline, co-integration of the two parallel gasifiers was the best alternative based on received IRR.

  • 9.
    Bauer, Fredric
    et al.
    Lund University.
    Berglund, Kris
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Hulteberg, Christian
    Lund University.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Mesfun, Sennai
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Nilsson, Robert
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Rova, Ulrika
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Wännström, Sune
    SP Technical Research Institute of Sweden.
    Comparative system analysis of carbon preserving fermentations for biofuels production2013Rapport (Refereegranskat)
    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 10.
    Börjesson, Pål
    et al.
    Lunds universitet.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Ahlgren, Serina
    Sveriges Lantbruksuniversitet.
    Nyström, Ingrid
    f3 och CIT Industriell Energi.
    Dagens och framtidens hållbara biodrivmedel: Underlagsrapport från f3 till utredningen om FossilFri Fordonstrafik2013Rapport (Refereegranskat)
    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 11.
    Carvalho, Lara
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Furusjö, Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Kirtania, Kawnish
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Anheden, Marie
    Innventia AB.
    Wolf, Jens
    Innventia AB.
    Techno-economic assessment of catalytic gasification of biomass powders for methanol production2017Ingår i: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976, Vol. 237, s. 167-177Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This study evaluated the techno-economic performance and potential benefits of methanol production through catalytic gasification of forest residues and lignin. The results showed that while catalytic gasification enables increased cold gas efficiencies and methanol yields compared to non-catalytic gasification, the additional pre-treatment energy and loss of electricity production result in small or no system efficiency improvements. The resulting required methanol selling prices (90-130 €/MWh) are comparable with production costs for other biofuels. It is concluded that catalytic gasification of forest residues can be an attractive option as it provides operational advantages at production costs comparable to non-catalytic gasification. The addition of lignin would require lignin costs below 25 €/MWh to be economically beneficial.

  • 12.
    Carvalho, Lara
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Furusjö, Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. IVL – Swedish Environmental Institute, Stockholm, Sweden.
    Ma, Chunyan
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Ji, Xiaoyan
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
    Hedlund, Jonas
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Grahn, Mattias
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Öhrman, Olov G. W.
    IVL – Swedish Environmental Institute, Stockholm, Sweden;RISE Energy Technology Center AB, Piteå, Sweden.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
    Alkali enhanced biomass gasification with in situ S capture and a novel syngas cleaning: Part 2: Techno-economic analysis2018Ingår i: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 165, nr Part B, s. 471-482Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Previous research has shown that alkali addition has operational advantages in entrained flow biomass gasification and allows for capture of up to 90% of the biomass sulfur in the slag phase. The resultant low-sulfur content syngas can create new possibilities for syngas cleaning processes. The aim was to assess the techno-economic performance of biofuel production via gasification of alkali impregnated biomass using a novel gas cleaning systemcomprised of (i) entrained flow catalytic gasification with in situ sulfur removal, (ii) further sulfur removal using a zinc bed, (iii) tar removal using a carbon filter, and (iv) CO2 reductionwith zeolite membranes, in comparison to the expensive acid gas removal system (Rectisol technology). The results show that alkali impregnation increases methanol productionallowing for selling prices similar to biofuel production from non-impregnated biomass. It was concluded that the methanol production using the novel cleaning system is comparable to the Rectisol technology in terms of energy efficiency, while showing an economic advantagederived from a methanol selling price reduction of 2–6 €/MWh. The results showed a high level of robustness to changes related to prices and operation. Methanol selling prices could be further reduced by choosing low sulfur content feedstocks.

  • 13.
    Carvalho, Lara
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Wolf, Jens
    RISE Bioeconomy.
    Furusjö, Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Methanol production via black liquor co-gasification with expanded raw material base: Techno-economic assessment2018Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 225, s. 570-584Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Entrained flow gasification of black liquor combined with downstream-gas-derived synthesis of biofuels in Kraft pulp mills has shown advantages regarding energy efficiency and economic performance when compared to combustion in a recovery boiler. To further increase the operation flexibility and the profitability of the biofuel plant while at the same time increase biofuel production, black liquor can be co-gasified with a secondary feedstock (blend-in feedstock). This work has evaluated the prospects of producing biofuels via co-gasification of black liquor and different blend-in feedstocks (crude glycerol, fermentation residues, pyrolysis liquids) at different blend ratios. Process modelling tools were used, in combination with techno-economic assessment methods. Two methanol grades, crude and grade AA methanol, were investigated. The results showed that the co-gasification concepts resulted in significant increases in methanol production volumes, as well as in improved conversion efficiencies, when compared with black liquor gasification; 5-11 and 4-10 percentage point in terms of cold gas efficiency and methanol conversion efficiency, respectively. The economic analysis showed that required methanol selling prices ranging from 55-101 €/MWh for crude methanol and 58-104 €/MWh for grade AA methanol were obtained for an IRR of 15%. Blend-in led to positive economies-of-scale effects and subsequently decreased required methanol selling prices, in particular for low cost blend-in feedstocks (prices below approximately 20 €/MWh). The co-gasification concepts showed economic competitiveness to other biofuel production routes. When compared with fossil fuels, the resulting crude methanol selling prices were above maritime gas oil prices. Nonetheless, for fossil derived methanol prices higher than 80 €/MWh, crude methanol from co-gasification could be an economically competitive option. Grade AA methanol could also compete with taxed gasoline. Crude glycerol turned out as the most attractive blend-in feedstock, from an economic perspective. When mixed with black liquor in a ratio of 50/50, grade AA methanol could even be cost competitive with untaxed gasoline.

  • 14.
    Carvalho, Lara
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. Bioenergy 2020+ GmbH.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Wopienka, Elisabeth
    Bioenergy 2020+ GmbH.
    Challenges in small-scale combustion of agricultural biomass fuels2008Ingår i: International Journal of Energy for a Clean Environment, ISSN 2150-3621, E-ISSN 2150-363X, Vol. 9, nr 1-3, s. 127-142Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Straw, Miscanthus, maize, and horse manure were reviewed in terms of fuel characteristics. They were tested in existing boilers, and the particulate and gaseous emissions were monitored. The ash was analyzed for the presence of sintered material. All the fuels showed problems with ash lumping and slag formation. Different boiler technologies showed different operational performances. Maize and horse manure are problematic fuels regarding NOx and particulate emissions. Miscanthus was the best fuel tested. Due to the big variation of fuel properties and therefore combustion behavior of agricultural biomass, further R&D is required to adapt the existing boilers for these fuels.

  • 15.
    Carvalho, Lara
    et al.
    Austrian Bioenergy Centre.
    Lundgren, Joakim
    Wopienka, Elisabeth
    Austrian Bioenergy Centre.
    Öhman, Marcus
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Challenges in small-scale combustion of agricultural biomass fuels2007Ingår i: 9th Conference on Energy for a Clean Environment: Clean Air 2007, 2007Konferensbidrag (Refereegranskat)
    Abstract [en]

    In the present work, several agricultural biomass fuels, namely straw, Miscanthus,maize whole crop and horse manure mixed with two bedding materials, woodshavings and straw, were reviewed in terms of fuel characteristics. Furthermore,these fuels were tested in several existing boiler technologies and the particulateand gaseous emissions were monitored. The ash was analysed visually in terms ofpresence of sintered material. As expected, all the fuels showed problems withash lumping and slag formation, especially straw and horse manure. Differentboiler technologies showed different operational performance regarding ash andslag management. Miscanthus was the best fuel tested regarding emissions. Maizeand horse manure are problematic fuels regarding NOx and particulate emissions.Due to the big variation of the fuel properties and therefore combustion behaviourof agricultural biomass, further R&D is required to adapt the existing small-scalecombustion systems for these new fuels. Improvements in the combustionchamber design, controlling technology and ash removal systems of small-scalecombustion systems are therefore essential.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 16.
    Carvalho, Lara
    et al.
    Bioenergy 2020+ GmbH, Gewerbepark Haag 3, 3250 Wieselburg-Land, Austria.
    Wopienka, Elisabeth
    Bioenergy 2020+ GmbH, Gewerbepark Haag 3, 3250 Wieselburg-Land, Austria.
    Pointner, Christian
    Bioenergy 2020+ GmbH, Gewerbepark Haag 3, 3250 Wieselburg-Land, Austria.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Verma, Vijay Kumar
    Bioenergy 2020+ GmbH, Gewerbepark Haag 3, 3250 Wieselburg-Land, Austria.
    Haslinger, Walter
    Bioenergy 2020+ GmbH, Gewerbepark Haag 3, 3250 Wieselburg-Land, Austria.
    Schmidl, Christoph
    Bioenergy 2020+ GmbH, Gewerbepark Haag 3, 3250 Wieselburg-Land, Austria.
    Performance of a pellet boiler fired with agricultural fuels2013Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 104, s. 286-296Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The increasing demand for woody biomass increases the price of this limited resource, motivating the growing interest in using woody materials of lower quality as well as non-woody biomass fuels for heat production in Europe. The challenges in using non-woody biomass as fuels are related to the variability of the chemical composition and in certain fuel properties that may induce problems during combustion. The objective of this work has been to evaluate the technical and environmental performance of a 15 kW pellet boiler when operated with different pelletized biomass fuels, namely straw (Triticum aestivum), Miscanthus (Miscanthus × giganteus), maize (Zea mays), wheat bran, vineyard pruning (from Vitis vinifera), hay, Sorghum (Sorghum bicolor) and wood (from Picea abies) with 5% rye flour. The gaseous and dust emissions as well as the boiler efficiency were investigated and compared with the legal requirements defined in the FprEN 303-5 (final draft of the European standard 303-5). It was found that the boiler control should be improved to better adapt the combustion conditions to the different properties of the agricultural fuels. Additionally, there is a need for a frequent cleaning of the heat exchangers in boilers operated with agricultural fuels to avoid efficiency drops after short term operation. All the agricultural fuels satisfied the legal requirements defined in the FprEN 303-5, with the exception of dust emissions during combustion of straw and Sorghum. Miscanthus and vineyard pruning were the best fuels tested showing comparable emission values to wood combustion.

  • 17.
    Ekbom, Tomas
    et al.
    Grontmij AB, Energy and Power, Stockholm, Sweden.
    Hulteberg, Christian
    Nordlight AB, Limhamn, Sweden;Lund University, Sweden.
    Grip, Carl-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Larsson, Mikael
    Swerea MEFOS AB, Sweden.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Nilsson, Leif
    SSAB EMEA, Luleå, Sweden.
    Tunå, Per
    Lund University, Sweden.
    Methanol production from steel-work off-gases and biomass based synthesis gas2012Ingår i: International Conference on Applied Energy, ICAE 2012: Jul 5-8, 2012, Suzhou, China, 2012, artikel-id ICAE2012-A10512Konferensbidrag (Refereegranskat)
    Abstract [en]

    The main objective has been to describe different cases of the methanol production from steel-work off gases (Coke oven gas and Basic oxygen furnace gas) and biomass based synthesis gas. The SSAB steel mill in the town of Luleå, Sweden has been used as a basis to analyze four different methanol production cases.The studied biomass gasification technology is based on a fluidized bed gasifier unit, where the production capacity is determined from case to case coupled to the heat production required to satisfy the local district heating demand. Critical factors are the integration of the gases with availability to the synthesis unit, to balance the steam system of the biorefinery and to meet the district heat demand of Luleå.For each case, the annual production potential of methanol, the overall production efficiencies and the effects on the total steel plant have been estimated.

    Ladda ner fulltext (pdf)
    fulltext
  • 18.
    Furusjö, Erik
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Kirtania, Kawnish
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Jafri, Yawer
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Oller, Albert Bach
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Umeki, Kentaro
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Landälv, Ingvar
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Gebart, Rikard
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Pettersson, Esbjörn
    SP ETC.
    Co-gasification of pyrolysis oil and black liquor - a new track for production of chemicals and transportation fuels from biomass2015Konferensbidrag (Refereegranskat)
    Abstract [en]

    Pressurized oxygen-blown entrained flow black liquor (BL) gasification, the Chemrec technology, has been demonstrated in a 3 MWth pilot plant in Piteå, Sweden for more than 25,000 h. The plant is owned and operated by Luleå University of Technology since 2013. It is well known that catalytic activity of alkali metals is important for the high reactivity of black liquor, which leads to a highly efficient BL gasification process. The globally available volume of BL is however limited and strongly connected to pulp production. By co-gasifying pyrolysis oil (PO) with BL it is possible to utilize the catalytic activity also for PO conversion to syngas. Adding PO leads to larger feedstock flexibility with the possibility of building larger biofuels plants based on BL gasification technology. This presentation summarizes new results from research activities aimed at developing and assessing the PO/BL co-gasification process. Results from laboratory experiments with PO/BL mixtures show that pyrolysis behavior and char gasification reactivity are similar to pure BL. This means that the decrease in the alkali metal concentration due to the addition of PO in the mixture does not decrease the reactivity. Pure PO is much less reactive. Mixing tests show that the fraction of PO that can be mixed into BL is limited by lignin precipitation as a consequence of PO acidity. Pilot scale PO/BL co-gasification experiments have been executed following design and construction of a new feeding system to allow co-feeding of PO with BL. The results confirm the conclusions from the lab scale study and prove that the co-gasification concept is practically applicable. Process performance of the pilot scale co-gasification process is similar to gasification of BL only with high carbon conversion and clean syngas generation. This indicates that the established BL gasification technology can be used for co-gasification of PO and BL without major modifications.

  • 19.
    Furusjö, Erik
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. IVL Swedish Environmental Research Institute, Climate & Sustainable Cities.
    Ma, Chunyan
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Ji, Xiaoyan
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Carvalho, Lara
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Alkali enhanced biomass gasification with in situ S capture and novel syngas cleaning: Part 1: Gasifier performance2018Ingår i: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 157, s. 96-105Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Previous research shows that alkali addition in entrained flow biomass gasification can increase char conversion and decrease tar and soot formation through catalysis. This paper investigates two other potential benefits of alkali addition: increased slag flowability and in situ sulfur capture.

    Thermodynamic equilibrium calculations show that addition of 2–8% alkali catalyst to biomass completely changes the chemical domain of the gasifier slag phase to an alkali carbonate melt with low viscosity. This can increase feedstock flexibility and improve the operability of an entrained flow biomass gasification process. The alkali carbonate melt also leads to up to 90% sulfur capture through the formation of alkali sulfides. The resulting reduced syngas sulfur content can potentially simplify gas cleaning required for catalytic biofuel production.

    Alkali catalyst recovery and recycling is a precondition for the economic feasibility of the proposed process and is effected through a wet quench. It is shown that the addition of Zn for sulfur precipitation in the alkali recovery loop enables the separation of S, Ca and Mg from the recycle. For high Si and Cl biomass feedstocks, an alternative separation technology for these elements may be required to avoid build-up.

  • 20.
    Hansson, Julia
    et al.
    IVL Swedish Environmental Research Institute, Box 530 21, Gothenburg, SE-400 14, Sweden; Department of Mechanics and Maritime Sciences, Maritime Environmental Sciences, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.
    Ahlström, Johan
    RISE Research Institutes of Sweden, Drottning Kristinas väg 26, Stockholm, Gothenburg, SE-114 28, Sweden.
    Furusjö, Erik
    RISE Research Institutes of Sweden, Drottning Kristinas väg 26, Stockholm, Gothenburg, SE-114 28, Sweden.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Nojpanya, Pavinee
    IVL Swedish Environmental Research Institute, Box 530 21, Gothenburg, SE-400 14, Sweden.
    Costs for Reducing GHG Emissions from Road and Air Transport with Biofuels and Electrofuels2023Ingår i: European Biomass Conference and Exhibition (EUBCE) Proceedings / [ed] I. De Bari; N. Scarlat; A. Grassi, ETA-Florence Renewable Energies , 2023, s. 68-372Konferensbidrag (Refereegranskat)
  • 21.
    Hebenstreit, Babette
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Höftberger, Ernst
    Bioenergy 2020+ GmbH.
    Ohnmacht, Ralf
    VOIGT+WIPP Engineers GmbH.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Toffolo, Andrea
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Enhanced flue gas condensation technology: Analysis of a 10 MW demonstration plant2013Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    A study on the application of an active condensation system to a typical Austrian heating plant fed with wood chips is presented. The heating plant consists of two biomass boilers (5MW+3MW). The flue gas of both boilers is mixed and directed to a condensing heat exchanger for heat recovery. The heat gained in the heat recovery system is used for preheating the reflux. A heat pump was integrated to enhance the heat recovery. In this paper the integration of the heat pump is discussed. All parts are modeled to calculate the potential energy gain which is obtained and to assess the usefulness of the application of a heat pump from a thermodynamic point of view. In addition, an economic analysis was carried out to evaluate the payback time for the heat pump using the typical Austrian heat and electricity prices. Finally first measurement results are discussed.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 22.
    Hebenstreit, Babette
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Schnetzinger, R.
    Bioenergy 2020+ GmbH.
    Ohnmacht, R.
    Bioenergy 2020+ GmbH.
    Höftberger, E.
    Bioenergy 2020+ GmbH.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Haslinger, W.
    Bioenergy 2020+ GmbH.
    Toffolo, Andrea
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Techno-economic study of a heat pump enhanced flue gas heat recovery for biomass boilers2014Ingår i: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 71, s. 12-22Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An active condensation system for the heat recovery of biomass boilers is evaluated. The active condensation system utilizes the flue gas enthalpy exiting the boiler by combining a quench and a compression heat pump. The system is modelled by mass and energy balances. This study evaluates the operating costs, primary energy efficiency and greenhouse gas emissions on an Austrian data basis for four test cases. Two pellet boilers (10 kW and 100 kW) and two wood chip boilers (100 kW and 10 MW) are considered. The economic analysis shows a decrease in operating costs between 2% and 13%. Meanwhile the primary energy efficiency is increased by 3–21%. The greenhouse gas emissions in CO2 equivalents are calculated to 15.3–27.9 kg MWh−1 based on an Austrian electricity mix. The payback time is evaluated on a net present value (NPV) method, showing a payback time of 2–12 years for the 10 MW wood chip test case.

  • 23.
    Hermansson, Roger
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Solar assisted small-scale biomass district heating system in the northern part of Sweden2004Ingår i: International Journal of Green Energy, ISSN 1543-5075, E-ISSN 1543-5083, Vol. 1, nr 4, s. 467-482Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This article presents a case study of a projected solar assisted biomass district heating system in the north of Sweden. It is generally known that a biomass district heating system combined with solar heat brings many important benefits. The most common system solution is to install a heat store and a large solar collector field near the heating central. No plant of this type is however in operation in the northern part of Sweden. The main reason for this is that the solar irradiation at these latitudes is very low when the demand for heat is high. Solar heat could however be useful during summer in order to generate hot tap water. One problem is that the heat losses, calculated as percentage of the delivered heat, become very large during these months. This article presents the idea of allowing the connected households to generate their own hot tap water using solar collectors and heat stores installed in each house. The district heating network can therefore be closed in summer, which eliminates the heat losses outside the heating period. A case study of a projected plant has been carried out and it is shown that it is possible to reduce the heat losses by 20% compared to a conventional system. This idea also provides many other important technical and economic benefits.

  • 24.
    Ji, Xiaoyan
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Wang, Chuan
    PRISMA – Centre for process integration in steelmaking, Swerea MEFOS AB, 971 25 Luleå, Sweden.
    Dahl, Jan
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Grip, Carl-Erik
    Process simulation and energy optimization for the pulp and paper mill2010Ingår i: PRES 2010: 13th Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction, 28 August - 1 September 2010, Prague, Czech Republic / [ed] J.J. Klemeš; H.L. Lam; P.S. Varbanov, 2010, s. 283-288Konferensbidrag (Refereegranskat)
    Abstract [en]

    A process integration model is developed based on mixed integer linear programming. The analysis is carried out using the reMIND software in combination with the commercial optimization software CPLEX. The steam production (heat recovery boiler, bark boiler and steam turbines) and the process steam consumers (digester, evaporation plant, bleaching plant as well as pulp dry machine and paper making machine) are modeled as separate modules and thereafter linked and are validated using the operation data from a pulp and paper mill in the Northern Sweden. The whole plant is simulated and initial optimization runs are performed in which the cost is to be minimized.

    Ladda ner fulltext (pdf)
    fulltext
  • 25.
    Ji, Xiaoyan
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Wang, Chuan
    Dahl, Jan
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Grip, Carl-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Simulation and energy optimization in a pulp and paper mill: Evaporation plant and digester2011Ingår i: Third International Conference on Applied Energy: 16-18 May 2011 - Perugia, Italy, 2011, s. 109-122Konferensbidrag (Refereegranskat)
    Abstract [en]

    A mathematical process integration model of a pulp and paper mill in the Northern Sweden has been developed. The main modelling focus has been put on the two main steam consumers (the evaporation plant and the digester), for which detailed material and energy balances have been established. Operational data have been used to validate the simulation results. By implementing these submodels into the complete plant model, the influence of different operation parameters on the overall plant performance has been investigated. Furthermore, introductory studies with the main objective to minimize the plant energy cost have been carried out. The correlation and differences between economic and energy have been discussed

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 26.
    Ji, Xiaoyan
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Wang, Chuan
    Dahl, Jan
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Grip, Carl-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Simulation and energy optimization of a pulp and paper mill: evaporation plant and digester2012Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 97, nr Spec. Issue, s. 30-37Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A detailed mathematical process integration model of a pulp and paper mill in the Northern Sweden has been developed. The main objective of this work has been set to describe the practical development of the model with particular emphasis on the development of the digester and evaporation plant sub-models. Actual plant measurements have been used to validate the model. By implementing the sub-models into the complete plant model, the influence of different operation parameters on the overall plant performance has been investigated. Furthermore, introductory studies with the main objective to minimize the plant energy cost have been carried out.

    Ladda ner fulltext (pdf)
    fulltext
  • 27.
    Ji, Xiaoyan
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Wang, Chuan
    Grip, Carl-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Simulation and optimization of steam generation in a pulp and paper mill2011Ingår i: Proceedings of the World Renewable Energy Congress 2011 (WREC 2011): 9-13 May, Linköping, Linköping University Electronic Press, 2011Konferensbidrag (Refereegranskat)
    Abstract [en]

    A mathematical process integration model for the steam generation part (recovery boiler, bark boiler, and turbine) was developed based on a pulp and paper mill in the Northern Sweden. The material and energy balances were calculated theoretically and then the operation data from a pulp and paper mill in the Northern Sweden were used to validate the simulation results. By implementing it into the whole plant, the effect of the operation conditions on the whole plant performance were investigated. The introductory studies were carried out with an objective function to minimize the energy cost. The influence of different parameters was rigorously studied. The correlation between economic and energy optima was discussed.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 28. Leduc, Sylvain
    et al.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Franklin, O.
    International Institute for Applied System Analysis (IIASA), Laxenburg.
    Dotzauer, E.
    Mälardalen University.
    Location of a biomass based methanol production plant: a dynamic problem in northern Sweden2010Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 87, nr 1, s. 68-75Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Concerning production and use of biofuels, mismatch between the locations of feedstock and the biofuel consumer may lead to high transportation costs and negative environmental impact. In order to minimize these consequences, it is important to locate the production plant at an appropriate location. In this paper, a case study of the county of Norrbotten in northern Sweden is presented with the purpose to illustrate how an optimization model could be used to assess a proper location for a biomass based methanol production plant. The production of lignocellulosic based methanol via gasification has been chosen, as methanol seems to be one promising alternative to replace fossil gasoline as an automotive fuel and Norrbotten has abundant resources of woody biomass. If methanol would be produced in a stand-alone production plant in the county, the cost for transportation of the feedstock as well as the produced methanol would have great impact on the final cost depending on where the methanol plant is located. Three different production plant sizes have been considered in the study, 100, 200 and 400 MW (biomass fuel input), respectively. When assessing a proper location for this kind of plant, it is important to also consider the future motor fuel demand as well as to identify a heat sink for the residual heat. In this study, four different automotive fuel- and district heating demand scenarios have been created until the year 2025. The results show that methanol can be produced at a maximum cost of 0.48 €/l without heat sales. By selling the residual heat as district heating, the methanol production cost per liter fuel may decrease by up to 10% when the plant is located close to an area with high annual heat demand.

  • 29. Leduc, Sylvain
    et al.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Franklin, Oskar
    International Institute for Applied System Analysis (IIASA), Laxenburg.
    Schmid, Erwin
    Dotzauer, Erik
    Optimal location for a biomass based methanol production plant: case study in Northern Sweden2007Ingår i: From Research to Market Deployment: 15th European Biomass Conference & Exhibition ; proceedings of the international conference held in Berlin, Germany, 7 - 11 May 2007 / [ed] K. Maniatis, Florence: ETA - Renewable Energies , 2007Konferensbidrag (Refereegranskat)
    Abstract [en]

    Methanol appears to be a new alternative fuel in the transport sector. Methanol can be produced through gasification of lignocellulosic biomass, which makes it a renewable fuel, and its utilization has therefore an impact on greenhouse gas emissions. The county of Norrbotten in northern Sweden has the characteristic to have great amount of woody biomass, and a sparsely inhabited area. Transportation distances of both biomass and methanol would then have a great impact on the final cost of methanol depending on where the methanol plant is located. This county was therefore studied as a case study with a twenty year perspective in order to validate an optimization model. The optimal locations of three different sizes of methanol plants were studied for four demographic scenarios. From this study it appears that methanol plants of 100 MWbiomass and 200 MWbiomass would be set up closer to the demand area than a 400 MWbiomass that would optimally be set up more inlands close to the available biomass.

    Ladda ner fulltext (pdf)
    fulltext
  • 30. Leduc, Sylvain
    et al.
    Starfelt, F.
    Mälardalen University.
    Dotzauer, E.
    Mälardalen University.
    Kindermann, G.
    International Institute for Applied System Analysis (IIASA), Laxenburg.
    McCallum, I.
    International Institute for Applied System Analysis (IIASA), Laxenburg.
    Obersteiner, M.
    Obersteiner.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Optimal location of lignocellulosic ethanol refineries with polygeneration in Sweden2010Ingår i: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 35, nr 6, s. 2709-2716Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The integration of ethanol production with combined heat and power plants is considered in this paper. An energy balance process model has been used to generate data for the production of ethanol, electricity, heat and biogas. The geographical position of such plants becomes of importance when using local biomass and delivering transportation fuel and heat. An optimization model has thus been used to determine the optimal locations for such plants in Sweden. The entire energy supply and demand chain from biomass outtake to gas stations filling is included in the optimization. Input parameters have been studied for their influence on both the final ethanol cost and the optimal locations of the plants. The results show that the biomass cost, biomass availability and district heating price are crucial for the positioning of the plant and the ethanol to be competitive against imported ethanol. The optimal location to set up polygeneration plants is demonstrated to be in areas where the biomass cost is competitive and in the vicinity of small to medium size cities. Carbon tax does not influence the ethanol cost, but solicits the production of ethanol in Sweden, and changes thus the geography of the plant locations.

  • 31.
    Li, Fangfang
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Chang, Fei
    Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Zhang, Xiangping
    Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
    Liu, Yanrong
    Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
    Engvall, Klas
    Department of Chemical Engineering and Technology, Chemical Technology, KTH Royal University of Technology, Stockholm 10044, Sweden.
    Ji, Xiaoyan
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Energy, Cost, and Environmental Assessments of Methanol Production via Electrochemical Reduction of CO2 from Biosyngas2023Ingår i: ACS Sustainable Chemistry and Engineering, E-ISSN 2168-0485, Vol. 11, nr 7, s. 2810-2818Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrochemical reduction of CO2 removed from biosyngas into value-added methanol (CH3OH) provides an attractive way to mitigate climate change, realize CO2 utilization, and improve the overall process efficiency of biomass gasification. However, the economic and environmental feasibilities of this technology are still unclear. In this work, economic and environmental assessments for the stand-alone CO2 electrochemical reduction (CO2R) toward CH3OH with ionic liquid as the electrolyte and the integrated process that combined CO2R with biomass gasification were conducted systematically to identify key economic drivers and provide technological indexes to be competitive. The results demonstrated that costs of investment associated with CO2R and electricity are the main contributors to the total production cost (TPC). Integration of CO2R with CO2 capture/purification and biomass gasification could decrease TPC by 28%-66% under the current and future conditions, highlighting the importance of process integration. Energy and environmental assessment revealed that the energy for CO2R dominated the main energy usage and CO2 emissions, and additionally, the energy structure has a great influence on environmental feasibility. All scenarios could provide climate benefits over the conventional coal-to-CH3OH process if renewable sources are used for electricity generation.

    Ladda ner fulltext (pdf)
    fulltext
  • 32.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Design and experimental studies of a biomass fired furnace for small- and medium scale heating applications2004Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    The main objective of the work was to develop a biomass fired furnace for small and medium scale heating systems, which has the ability to manage wet as well as unclassified biofuels with maintained low emissions of harmful substances. The system should also be able to cope with large and frequently occurring thermal output variations fulfilling rigorous environmental restrictions. The furnace consists of two combustion stages, a primary- and a secondary zone, and has a maximum thermal output of 500 kW. The studies have been focussed on the evaluation of the environmental performance of the new furnace. The main conclusion of the work is that the furnace fulfils all the pre-set requirements regarding operational- and environmental performance. The study has also shown that it is possible to use refuse in the form of horse manure mixed with wood-shavings and straw with satisfactorily environmental performance.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 33.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Performance of a new wood-chips fired boiler for small district heating systems2002Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    A new bio fuel based boiler concept for small district heating systems has been developed. The boiler enables heat load variations from 100% down to 10% of nominal thermal output 500 kW fulfilling the most rigorous environmental restrictions. To obtain as low fuel costs as possible, an unrefined fuel in the form of wood-chips with moisture content in the range of 35-58% is used. The results are very satisfactory concerning both performance and emissions. Typical emissions of CO and NOx during the experiments are in the range 10 to 50 mg Nm-3 (5 to 25 mg MJ-1) and 130 to 175 mg Nm-3 (60 to 90 mg MJ-1), respectively.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 34.
    Lundgren, Joakim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Asp, Björn
    Larsson, Mikael
    Swerea MEFOS AB.
    Grip, Carl-Erik
    Methanol production at an integrated steel mill2008Ingår i: Proceedings of the 18th International Congress of Chemical and Process Engineering: 24th - 28th August, Prague, Czech Republic, Prague: ČSCHI - Czech Society of Chemical Engineering , 2008Konferensbidrag (Refereegranskat)
    Abstract [en]

    Residual steel work gases are often utilised internally at the steel plant as a fuel and as well as for heat- and power production in heat recovery steam boilers located near the steel mill. This study aims to investigate the technical and economic consequences to use the coke oven gas (COG) to produce methanol (MeOH) to be used as automotive fuel. In a case study of a steel mill located in the northern Sweden, SSAB Tunnplåt AB in the town of Luleå, four different production processes have been studied. Two of them only use COG as a fuel, while the other two systems also use biomass based synthesis gas to blend with the COG. The results show that nearly 300 GWh of MeOH could be produced annually from COG only to a production cost in the range of €0.13 to €0.26 per litre MeOH. If also 420 GWh per year of biomass for synthesis gas production is supplied and the gas blended with the COG totally 570 GWh of MeOH can be produced annually to a similar production cost range. The main conclusion is that MeOH can be produced to a competitive cost independent of production system. Turning a steel mill into a refinery may also result in other benefits, such as better energy storage possibilities and increased incentives to utilise residual heat currently not motivated to make use of.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 35.
    Lundgren, Joakim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Ekbom, T.
    Grontmij AB, Energy and Power, Stockholm, 47303, 100 74, Sweden.
    Hulteberg, Christian
    Nordlight AB, Limhamn, 30084, 200 61, Sweden; Lund University, Chemical Engineering, 221 00 Lund, Sweden.
    Larsson, Mikael
    Swerea MEFOS AB, Division Process Metalurgy, 971 25 Luleå, 812, Sweden.
    Grip, Carl-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Nilsson, Leif K.
    SSAB EMEA, 971 88 Luleå, Sweden.
    Tunå, Per
    Lund University, Chemical Engineering, 221 00 Lund, Sweden.
    Methanol production from steel-work off-gases and biomass based synthesis gas2013Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 112, s. 431-439Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Off-gases generated during steelmaking are to a large extent used as fuels in process units within the plant. The surplus gases are commonly supplied to a plant for combined heat and power production. The main objective of this study has been to techno-economically investigate the feasibility of an innovative way of producing methanol from these off-gases, thereby upgrading the economic value of the gases. Cases analyzed have included both off-gases only and mixes with synthesis gas, based on 300 MWth of biomass. The SSAB steel plant in the town of Luleå, Sweden has been used as a basis. The studied biomass gasification technology is based on a fluidized-bed gasification technology, where the production capacity is determined from case to case coupled to the heat production required to satisfy the local district heating demand. Critical factors are the integration of the gases with availability to the synthesis unit, to balance the steam system of the biorefinery and to meet the district heat demand of Luleå. The annual production potential of methanol, the overall energy efficiency, the methanol production cost and the environmental effect have been assessed for each case. Depending on case, in the range of 102,000–287,000 ton of methanol can be produced per year at production costs in the range of 0.80–1.1 EUR per liter petrol equivalent at assumed conditions. The overall energy efficiency of the plant increases in all the cases, up to nearly 14%-units on an annual average, due to a more effective utilization of the off-gases. The main conclusion is that integrating methanol production in a steel plant can be made economically feasible and may result in environmental benefits as well as energy efficiency improvements.

  • 36.
    Lundgren, Joakim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Grip, Carl-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Ekbom, Tomas
    Grontmij AB, Energy and Power, Stockholm.
    Grip, Niklas
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Hulteberg, Christian
    Nordlight AB, Limhamn.
    Larsson, Mikael
    Nilsson, Leif
    SSAB EMEA, Luleå.
    Increased energy efficiency and carbon dioxide - reduction in steel mills: methanol from steel work off-gases2012Rapport (Övrigt vetenskapligt)
    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 37.
    Lundgren, Joakim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Helmerius, Jonas
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriell miljö- och processteknik.
    Integration of a hemicellulose extraction process into a biomass based heat and power plant2009Ingår i: Proceedings of ECOS 2009: 22nd International Conference on Efficiency, Cost, Optimization Simulation and Environmental Impact of Energy Systems, Foz do Iguaçú: ABCM, Brazilian Society of Mechanical Sciences and Engineering , 2009Konferensbidrag (Refereegranskat)
    Abstract [en]

    The development of processes where lignocellulosic biomass can be refined to several different end-products in the same plant, i.e. a biorefinery, will be important in the development towards a more sustainable society where fossil fuels are replaced. This paper presents the idea to integrate the production of green chemicals via hot water hemicellulose extraction of birch wood (hardwood) into a small-scale combined heat and power plant (CHP), in this case an externally fired gas turbine. A techno-economically successful concept could provide the option to turn a small- to medium scale CHP plant into a small- to medium scale biorefinery. The results show that the extracted wood-chips would serve very well as a fuel for combustion and gasification processes due to the relatively high heating value, low ash content and significantly lower concentrations of alkali metals. Under the assumed economic conditions, electricity can be produced to a cost in the range of €85.6 to €196.2 per MWhel and a fermentable feedstock stream with a xylose concentration of 65 g/L to a cost in between €0.44 to €4.15 per kg xylose depending on plant size and number of annual operational hours.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 38. Lundgren, Joakim
    et al.
    Hermansson, Roger
    Dahl, Jan
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    A new biomass based boiler concept for small district heating networks2001Ingår i: Proceedings of the 2001 Joint international combustion symposium: Toward efficient zero emission combustion - advances in air-fuel and oxy-fuel technlogies, Houston, Tex: International Energy Agency (IEA), 2001Konferensbidrag (Refereegranskat)
  • 39. Lundgren, Joakim
    et al.
    Hermansson, Roger
    Dahl, Jan
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Experimental studies during heat load fluctuations in a 500 kW wood-chips fired boiler2004Ingår i: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 26, nr 3, s. 255-267Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Several long-term experiments with fluctuating thermal outputs have been carried out in a newly developed biomass fuelled boiler suitable for small district heating networks. The experiments have been performed by either using the furnace only or the furnace together with a water heat store. Comparisons between these two operation strategies have been made concerning emissions and overall performance. Furthermore, the plant has been run to match a simulated heat demand during different seasons, in order to study the performance of the system during more realistic operation conditions. The results are very satisfactory concerning both performance and emissions, using any of the control strategies. Typical emissions of CO and NOx during the experiments are in the range of 10–50 mgNm−3 (5–25 mgMJ−1) and 130–175 mgNm−3 (60–90 mgMJ−1), respectively. However, during summer when the heat demand is low or zero, operational problems will occur if the heat store is excluded. Therefore, the main conclusion is that the most appropriate solution for a small district-heating system is to use a water heat store to match the heat load variations, while the furnace operates at as constant thermal output as possible.

  • 40.
    Lundgren, Joakim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Hermansson, Roger
    Dahl, Jan
    Experimental studies of a biomass boiler suitable for small district heating systems2004Ingår i: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 26, nr 5, s. 443-453Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Extensive experiments have been carried out in a newly developed furnace suitable for small district heating networks. The fuel is wood-chips with moisture content in the range of 30-58%. One of the unique features of this new furnace is the broad thermal output span, which makes it possible to run the boiler down to 10% of maximum heat load, with maintained low emissions of CO and total hydrocarbons (THC). The aim of this study has been to evaluate the performance of the combustion chamber during steady-state operation in the complete thermal output range. The experiments show very good results over the entire thermal output range. In the range 60 kW up to 500 kW, the average CO content in the stack gases is typically below 25 mg Nm-3(20 ppm) and the NOx concentration below 195 mg Nm-3(95 ppm) during steady state conditions. At lower thermal outputs, the average CO content is below 105 mg Nm-3(84 ppm). (All values standardised to 10 vol% O 2.)

  • 41. Lundgren, Joakim
    et al.
    Hermansson, Roger
    Dahl, Jan
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    New furnace designed for small-scale combustion of wet and inhomogeneous biomass fuels2005Ingår i: Biomass for energy, industry and climate protection: 14th European Biomass Conference & Exhibition ; proceedings of the international conference held in Paris, France, 17 - 21 October 2005 / [ed] L. Sjunnesson, Florence: ETA - Renewable Energies , 2005Konferensbidrag (Refereegranskat)
  • 42.
    Lundgren, Joakim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Hermansson, Roger
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik.
    Lundqvist, M.
    Design of a secondary combustion chamber for a 350 kW wood-chips fired furnace2003Ingår i: Proceedings, 4th International Conference on Fluid and Thermal Energy Conversion: FTEC 2003, 2003Konferensbidrag (Refereegranskat)
  • 43.
    Lundgren, Joakim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Pettersson, Esbjörn
    Combustion of horse manure for heat production2009Ingår i: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976, Vol. 100, nr 12, s. 3121-3126Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The main objectives of this paper have been to evaluate the use of horse manure and wood-shavings as a fuel for heat production and to provide sets of data on the chemical composition, ash characteristics and ash forming elements of the fuel. Another objective has been to investigate the possibility to use the ash as fertiliser by analysing the heavy metal and nutrient contents. The results showed that the fuel is well suited for combustion for heat production causing low emissions of products of incomplete combustion. The emissions of NOx were however high due to the high content of fuel bound nitrogen. Emissions of CO and NOx were typically in the range of 30-150 mg/Nm3 and 280-350 mg/Nm3 at 10 vol% O2, respectively. The analysis of the ash showed on sufficiently low concentration of heavy metals to allow recycling.

  • 44.
    Lundgren, Joakim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Pettersson, Esbjörn
    Practical, environmental and economic evaluation of different options for horse manure management2004Ingår i: CHISA 2004: 16th International Congress of Chemical and Process Engineering, 22 - 26 August 2004, Prague, Czech Republic, Prague, 2004Konferensbidrag (Refereegranskat)
  • 45.
    Lundgren, Joakim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Wallberg, Ola
    Lund Universitet.
    Analysis of Different Research Activities and Description of Parties within the Swedish Knowledge Centre for Renewable Transportation Fuel2012Rapport (Övrig (populärvetenskap, debatt, mm))
  • 46.
    Lundmark, Robert
    et al.
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Forsell, Nicklas
    International Institute for Applied Systems Analysis.
    Leduc, Sylvain
    International Institute for Applied Systems Analysis.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Ouraich, Ismail
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Pettersson, Karin
    Rise.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Large-scale implementation of biorefineries: New value chains, products and efficient biomass feedstock utilisation2018Rapport (Övrig (populärvetenskap, debatt, mm))
    Ladda ner fulltext (pdf)
    fulltext
  • 47.
    Lundmark, Robert
    et al.
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Ouraich, Ismail
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Nolander, Carl
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Andersson, Stefan
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Olofsson, Elias
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Bryngemark, Elina
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Leduc, Sylvain
    International Institute for Applied Systems Analysis, Österrike.
    Forsell, Nicklas
    International Institute for Applied Systems Analysis, Österrike.
    Kindermann, Georg
    International Institute for Applied Systems Analysis, Österrike.
    Pettersson, Karin
    Chamlers tekniska högskola.
    Projekt: Storskalig utbyggnad av bioraffinaderier: Nya värdekedjor, produkter och effektivt utnyttjande av skoglig biomassa2016Övrigt (Övrig (populärvetenskap, debatt, mm))
    Abstract [sv]

    Utvecklingen av kommersiella bioraffinaderikoncept är av strategisk betydelse för Sveriges utveckling till en biobaserad ekonomi. Bioraffinaderier bidrar till att ersätta fossila med biobaserade råvaror. Dessutom bidrar de till en smartare användning av biomassa, ökat förädlingsvärde samt utvecklingspotentialen av nya bioprodukter. Tekniska potentialer och industriella tillämpningar sammanlänkas med råvaruförsörjning samt marknads-, innovations- och policyaspekter. Projektet är tvärvetenskapligt och omfattar integration av modeller som kan redogöra för samspelet mellan olika sektorer, som inkluderar geografiska variationer av utbud och efterfrågan av skoglig biomassa, och som kan fånga effekterna av förändrade marknadsvillkor och styrmedel. För modellintegrationen kommer verktyg tas fram för att underlätta kommunikation och återkoppling mellan de ingående modellerna. Projektet syftar till att generera ny kunskap och ett modellramverk för avancerade systemanalyser relaterade till (i) den svenska biomassa och dess roll i ett hållbart energisystem och (ii) industriell omvandling av processindustrin i riktning mot ett framtida bioraffinaderi branschen. Genomförandefasen bygger på tre uppgiftsområden.

  • 48.
    Lundmark, Robert
    et al.
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Ouraich, Ismail
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Bryngemark, Elina
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Zetterholm, Jonas
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Olofsson, Elias
    Nolander, Carl
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Pettersson, Karin
    Chalmers tekniska högskola, Sverige.
    Harvey, Simon
    Chalmers tekniska högskola, Sverige.
    Ahlström, Johan
    Chalmers tekniska högskola.
    Andersson, Stefan
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Projekt: En hållbar omställning av energisystemet mot en ökad andel bioenergi2016Övrigt (Övrig (populärvetenskap, debatt, mm))
    Abstract [en]

    3 PhD projects: Markets and price formulation (LTU, economics); Technologies and value chains (Chalmers) and; Location and industrial change (LTU, energy engineering). The general system perspective has its starting point in the importance of biomass and bioenergy in the transition to a long-run sustainable energy system and to an efficient spatial resource utilization and production with increased value chains. Focus is on biorefineries. A spatial approach will be applied in combination with national energy system modelling in connection with technological development potentials and industrial applications is linked to the feed-stock supply as well as market and policy issues.

  • 49.
    Mesfun, Sennai
    et al.
    Ecosystems Services and Management Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
    Leduc, Sylvain
    Ecosystems Services and Management Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
    Patrizio, Piera
    Ecosystems Services and Management Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. Ecosystems Services and Management Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
    Mendoza-Ponce, Alma
    Ecosystems Services and Management Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
    Lammens, Tijs
    B.T.G. Biomass Technology Group B.V, Enschede, The Netherlands.
    Staritsky, Igor
    Wageningen Environmental Research (WENR), Team Earth Informatics, Wageningen, The Netherlands.
    Elbersen, Berien
    Wageningen Environmental Research (WENR), Team Earth Informatics, Wageningen, The Netherlands.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. Ecosystems Services and Management Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
    Kraxner, Florian
    Ecosystems Services and Management Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
    Spatio-temporal assessment of integrating intermittent electricity in the EU and Western Balkans power sector under ambitious CO2 emission policies2018Ingår i: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 164, s. 676-693Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This work investigates a power dispatch system that aims to supply the power demand of the EU and Western Balkans (EUWB) based on low-carbon generation units, enabled by the expansion of biomass, solar, and wind based electricity. A spatially explicit techno-economic optimization tool simulates the EUWB power sector to explore the dispatch of new renewable electricity capacity on a EUWB scale, under ambitious CO2 emission policies. The results show that utility-scale deployment of renewable electricity is feasible and can contribute about 9–39% of the total generation mix, for a carbon price range of 0–200 €/tCO2and with the existing capacities of the cross-border transmission network. Even without any explicit carbon incentive (carbon price of 0 €/tCO2), more than 35% of the variable power in the most ambitious CO2 mitigation scenario (carbon price of 200 €/tCO2) would be economically feasible to deploy. Spatial assessment of bio-electricity potential (based on forest and agriculture feedstock) showed limited presence in the optimal generation mix (0–6%), marginalizing its effect as baseload. Expansion of the existing cross-border transmission capacities helps even out the variability of solar and wind technologies, but may also result in lower installed RE capacity in favor of state-of-the-art natural gas with relatively low sensitivity to increasing carbon taxes. A sensitivity analysis of the investment cost, even under a low-investment scenario and at the high end of the CO2 price range, showed natural gas remains at around 11% of the total generation, emphasizing how costly it would be to achieve the final percentages toward a 100% renewable system.

  • 50.
    Mesfun, Sennai
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Grip, Carl-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Toffolo, Andrea
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Kudahettige-Nilsson, Rasika
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Rova, Ulrika
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Black liquor fractionation for biofuels production: A techno-economic assessment2014Ingår i: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976, Vol. 166, s. 508-517Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The hemicelluloses fraction of black liquor is an underutilized resource in many chemical pulp mills. It is possible to extract and separate the lignin and hemicelluloses from the black liquor and use the hemicelluloses for biochemical conversion into biofuels and chemicals. Precipitation of the lignin from the black liquor would consequently decrease the thermal load on the recovery boiler, which is often referred to as a bottleneck for increased pulp production. The objective of this work is to techno-economically evaluate the production of sodium-free lignin as a solid fuel and butanol to be used as fossil gasoline replacement by fractionating black liquor. The hydrolysis and fermentation processes are modeled in Aspen Plus to analyze energy and material balances as well as to evaluate the plant economics. A mathematical model of an existing pulp and paper mill is used to analyze the effects on the energy performance of the mill subprocesses.

12 1 - 50 av 77
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf