Change search
Refine search result
12 1 - 50 of 76
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Axelsson, Kennet B. E.
    et al.
    Luleå University of Technology.
    Elfgren, Lennart
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Fire Engineering.
    Grennberg, Torsten
    Luleå University of Technology.
    Horrigmoe, Geir
    Luleå University of Technology.
    Johansson, Bernt
    Institutionen för Anläggningsteknik. Verksamhetsberättelse 1987/881988Report (Other (popular science, discussion, etc.))
    Download full text (pdf)
    FULLTEXT01
  • 2.
    Axelsson, Kennet B. E.
    et al.
    Luleå University of Technology.
    Elfgren, Lennart
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Fire Engineering.
    Grennberg, Torsten
    Luleå University of Technology.
    Horrigmoe, Geir
    Luleå University of Technology.
    Johansson, Bernt
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Construction Engineering.
    Institutionen för Anläggningsteknik, Verksamhetsberättelse 1988/891989Report (Other (popular science, discussion, etc.))
    Download full text (pdf)
    FULLTEXT01
  • 3.
    Axelsson, Kennet B. E.
    et al.
    Luleå University of Technology.
    Elfgren, Lennart
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Fire Engineering.
    Grennberg, Torsten
    Luleå University of Technology.
    Horrigmoe, Geir
    Luleå University of Technology.
    Johansson, Bernt
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Construction Engineering.
    Institutionen för Anläggningsteknik. Verksamhetsberättelse 1989/901990Report (Other (popular science, discussion, etc.))
    Download full text (pdf)
    FULLTEXT01
  • 4.
    Axelsson, Kennet B. E.
    et al.
    Luleå University of Technology.
    Johansson, Bernt
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Construction Engineering.
    Elfgren, Lennart
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Fire Engineering.
    Grennberg, Torsten
    Luleå University of Technology.
    Horrigmoe, Geir
    Luleå University of Technology.
    Institutionen för Anläggningsteknik. Verksamhetsberättelse 1990/911991Report (Other (popular science, discussion, etc.))
    Download full text (pdf)
    FULLTEXT01
  • 5.
    Axhag, F.
    et al.
    Luleå University of Technology.
    Johansson, Bernt
    Tension flange instability of I-beams1999In: Journal of constructional steel research, ISSN 0143-974X, E-ISSN 1873-5983, Vol. 49, no 1, p. 69-81Article in journal (Refereed)
    Abstract [en]

    The possible lateral-torsional instability of an I-beam with braced compression flange is studied. It is shown that taking the sagging prior to lateral-torsional buckling into account gives a finite critical moment. A solution for a uniform I-beam under uniform bending is presented. It is further shown that this solution can be approximated by a simple geometrical relation for the critical strain. This approximation is a lower bound also where the bending is causing inelastic deformations. For normal structures tension flange instability will not be a problem but it may be necessary to consider it for very high strength shallow beams or if plastic rotations occur in the sagging region.

  • 6.
    Boström, Staffan
    et al.
    Luleå University of Technology.
    Johansson, Bernt
    Résistance à la fatigue des boulons précontraints dans les assemblages à recouvrement1994In: Construction Métallique, ISSN 0045-8198, no 3, p. 25-34Article in journal (Refereed)
  • 7.
    Boström, Staffan
    et al.
    Luleå University of Technology.
    Johansson, Bernt
    The fatigue strength of preloaded bolts in lap-joints1993In: Proceedings, Nordic Steel Colloquium, ECCS Annual Meeting: Odense, Danish Steel Institute, September 1991, Odense: Danish Steel Institute , 1993Conference paper (Other academic)
  • 8. Boström, Staffan
    et al.
    Johansson, Bernt
    Kellner, Håkan
    Renässans för järnvägsbroar1993In: V-byggaren : väg- och vattenbyggaren, ISSN 0283-5363, no 3, p. 44-47Article in journal (Other (popular science, discussion, etc.))
  • 9.
    Casas, Joan Ramon
    et al.
    Universitat Politècnica de Catalunya, Barcelona, Spain.
    Cremona, Christian
    Laboratoire Central des Ponts et Chaussées, Paris, France.
    Holm, Göran
    Swedish Geotechnical Institute, SGI, Lindköping, Sweden.
    Karoumi, Raid
    Royal Institute of Technology, KTH, Stockholm, Sweden.
    Melbourne, Clive
    University of Salford, United Kingdom.
    Plos, Mario
    Chalmers University of Technology, Göteborg, Sweden.
    Sloth, Mette
    COWI A/S, Lyngby, Denmark.
    Wisniewski, Dawid
    Wroclaw University of Technology, Poland.
    Gylltoft, Kent
    Chalmers University of Technology, Sweden.
    Thelandersson, Sven
    Lund University, Sweden.
    Johansson, Bernt
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Fire Engineering.
    Elfgren, Lennart
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Fire Engineering.
    Guideline for Load and Resistance Assessment of Existing European Railway Bridges: Advices on the use of advanced methods2007Report (Refereed)
    Abstract [en]

    The bridge assessment in many aspects is very similar to the bridge design. The same basic principles lie at the heart of the process. Nevertheless, an important difference lies in the fact that when a bridge is being designed, an element of conservatism is generally a good thing that can be achieved with very little additional costs. When a bridge is being assessed, it is important to avoid unnecessarily conservative measures because of the financial implications that may follow the decision of ratingthe bridge as deficient. Therefore, the design codes (e.g. EC codes) may not always be appropriate for assessment of existing bridges and some additional recommendations or guidelines are required that will lead to less conservative assessment of theirs load carrying capacity. Such guidelines have been already proposed for assessment of highway bridges in Europe. However, there is a lack of this type of documents that can be applied for the assessment of railway bridges.

    The present "Guideline for Load and Resistance Assessment of Existing European Railway Bridges - advices on the use of advanced methods" is providing guidance and recommendations for applying the most advanced and beneficial methods, models and tools for assessing the load carrying capacity of existing railway bridges. This includes systematized step-level assessment methodology, advanced safety formats (e.g. probabilistic or simplified probabilistic) refined structural analysis (e.g. non-linear or plastic, dynamic considering train-bridge interaction), better models of loads and resistance parameters (e.g. probabilistic and/or based on the results of measurements) and methods for incorporation of the results form monitoring and on-site testing (e.g. Bayesian updating).

    Basis for the "Guideline for Load and Resistance Assessment of Existing EuropeanRailway Bridges - advices on the use of advanced methods" is the research work carried out in the work package WP4 of the Sustainable Bridges project combined with the best practical experience and know-how of all the partners involved.

    The research activities within the work package WP4 have been carried out in the following five groups:

    • − Loads and dynamic effects, with focus on train loads and dynamics (Deliverables D4.3, also referred as SB 4.3 Dynamic (2007), or just SB4.3 (2007));
    • − Safety and probabilistic modelling (Deliverables D4.4, also referred as SB4.4Safety (2007), or just SB4.4 (2007));
    • − Concrete bridges, with focus on non-linear analysis (Deliverables D4.5, also referred as SB4.5 Concrete (2007), or just SB4.5 (2007));
    • − Metal bridges, with focus on riveted bridges (Deliverables D4.6, also referredas SB4.6 Metal (2007), or just SB4.6 (2007));
    • − Masonry arch bridges including soil/structure interaction (Deliverables D4.7,also referred as SB4.7 Masonry (2007), or just SB4.7 (2007)).

    The results of these activities are reported in corresponding Background Documents (Deliverables) listed above within parenthesis.

    The main results from the research activities performed and the know-how of all the partners in the specific areas of bridge assessment are tried to be presented in this Sustainable Bridges SB-LRA 2007-11-30 6 (428) Guideline in such a way that the target reader of the Guideline, a structural engineer experienced in assessment of railway bridges, is able to apply them in the everyday practice, without necessity of searching for several specific scientific publications. Nevertheless, in some cases it has been necessary to refer to public available literature and Background Documents prepared in the Sustainable Bridges project.

    The present Guideline has been prepared aiming to follow somehow the structure of the EC codes and it is divided into 10 chapters and 12 Annexes concerning:

    • − Assessment procedure (Chapter 2);
    • − Requirements, safety formats and limit states (Chapter 3, Annexes 3.1-3.7);
    • − Basic information for bridge assessment (Chapter 4);
    • − Load and dynamic effects (Chapter 5, Annex 5.1);
    • − Concrete bridges (Chapter 6);
    • − Metal bridges (Chapter 7, Annex 7.1);
    • − Masonry arch bridges (Chapter 8, Annexes 8.1 and 8.2);
    • − Foundations and transition zones (Chapter 9);
    • − Improvement of assessment using information from testing and monitoring (Chapter 10, Annex 10.1).

    In most of the topics related to railway bridges assessment the Guideline uses the current state-of-the-art knowledge and the presently best practice. Nevertheless, in many subjects it propose the use of original methods and models that have been developed, obtained or systematized due to research performed within one of the five groups of work package WP4.

    Download full text (pdf)
    fulltext
  • 10. Cermona, Christian
    et al.
    Patron, Alberto
    Hoehler, Susan
    Eichler, Björn
    Johansson, Bernt
    Larsson, Tobias
    Improved assessment methods for static and fatigue resistance of old metal railway bridges2007In: Sustainable bridges: assessment for future traffic demands and longer lives / [ed] Jan Bien; Lennart Elfgren; Jan Olofsson, Wrocław: Dolnoslaskie Wydawnictwo Edukacyjne , 2007, p. 261-272Conference paper (Refereed)
  • 11. Christian, Cremona
    et al.
    Johansson, Bernt
    Larsson, Tobias
    Patron, Alberto
    S, Hoehler
    B, Eichler
    Improved assessment methods for static and fatigue resistance of old metal railway bridges2008In: Bridge Maintenance, Safety Management, Health Monitoring and Informatics: Proceedings of the Fourth International Conference on Bridge Maintenance, Safety and Management, July 13-17 2008, Seoul, Korea - IABMAS '08, Boca Raton, Fla: Taylor and Francis Group , 2008, p. 3666-3674Conference paper (Refereed)
  • 12.
    Collin, Peter
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Construction Engineering.
    Johansson, Bernt
    Bridges in high strength steel2006In: Responding to Tomorrow's Challenges in Structural Engineering: IABSE Symposium Budapest 2006 ; report, Zürich: International Association for Bridge and Structural Engineering, 2006, p. 434-435Conference paper (Refereed)
  • 13.
    Collin, Peter
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Construction Engineering.
    Johansson, Bernt
    Bättre samverkansbroar på väg2001In: V-byggaren : väg- och vattenbyggaren, ISSN 0283-5363, no 1, p. 35-40Article in journal (Other academic)
  • 14.
    Collin, Peter
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Construction Engineering.
    Johansson, Bernt
    Design of welds in high strength steel2005In: EUROSTEEL 2005: 4th European Conference on Steel and Composite Structures / [ed] B. Hoffmeister; O. Hechler, Aachen: Verlag Mainz , 2005, p. 4.10/89-4.10/99Conference paper (Refereed)
    Download full text (pdf)
    fulltext
  • 15.
    Collin, Peter
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Construction Engineering.
    Johansson, Bernt
    Elementbyggda broar: ett koncept med slagkraft1997In: V-byggaren : väg- och vattenbyggaren, ISSN 0283-5363, no 3, p. 32-35Article in journal (Other academic)
  • 16.
    Collin, Peter
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Construction Engineering.
    Johansson, Bernt
    Eurocode for high strength steel and applications in construction2005In: Super-High Strength Steels: 1st international conference, 2 - 4 November 2005, Rome, Italy, [proceedings], Milano: Associazione Italiana di Metallurgia , 2005Conference paper (Refereed)
    Download full text (pdf)
    FULLTEXT01
  • 17.
    Collin, Peter
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Construction Engineering.
    Johansson, Bernt
    Snabba och starka stålbroar1997In: Husbyggaren : bygg, el, VVS, anläggning, ISSN 0018-7968, no 2Article in journal (Other (popular science, discussion, etc.))
  • 18.
    Collin, Peter
    et al.
    ScandiaConsult, Luleå, Sweden.
    Johansson, Bernt
    Luleå University of Technology.
    Wettbewerbsfähige Brücken in Verbundbauweise: [Competitive composite bridges]1999In: Stahlbau, ISSN 0038-9145, E-ISSN 1437-1049, Vol. 68, no 11, p. 908-918Article in journal (Refereed)
    Abstract [de]

    In vielen Ländern der Erde haben sich Brücken in Verbundbauweise zu einer bewährten Ausführungsvariante entwickelt. Die Wettbewerbsfähigkeit einer Verbundbrücke ist von verschiedenen Faktoren abhängig, wie z. B. die örtlichen Material- und Lohnkosten, aber auch die Erfahrungen des ausführenden Unternehmers. Im Vergleich zu Betonbrücken besteht ein großer Vorteil darin, daß die Stahlträger das Gewicht der Schalung und des frischen Betons tragen können, so daß keine temporären Schalungskonstruktionen erforderlich werden. Ein weiterer Vorteil ist die Zeitersparnis während der Montage auf der Baustelle, die zum einen die Ausgaben des Unternehmers reduzieren und zum anderen das Bauwerk für den Straßenverkehr früher nutzbar macht. Letzteres wird normalerweise bei der Beurteilung alternativer Brückenkonstruktionen vernachlässigt. Traditionell wird die Fahrbahnplatte vor Ort auf der Baustelle hergestellt. Dies bedeutet, daß die zugehörigen Arbeiten wie Einschalen und Verlegen der Bewehrung im Freien durchgeführt werden müssen. In Regionen mit langen Winterperioden können diese Arbeiten zu Problemen führen und somit auch die Kosten steigern. Ein weiterführender Schritt zur Erhöhung der Wettbewerbsfähigkeit von Verbundbrücken ist, neben den Stahlträgern auch die Beton-Fahrbahnplatten vorzufertigen. Die überwiegenden Vorteile für dieses Bauverfahren sind im folgenden aufgeführt: der Anteil der Lohnstunden für Arbeiten auf der Baustelle wird herabgesetzt; die Montagezeiten verkürzen sich; die Betonfertigteilelemente werden in der Fertigteilfabrik gefertigt, so daß sich die Ausführungsqualität verbessert; die Schwindkräfte am Bauwerk werden reduziert, da das Schwinden bereits überwiegend vor der Montage der Betonfertigteile auf die Stahlträger abgeschlossen ist; die Arbeitsbedingungen für das Einschalen, Verlegen der Bewehrung und Betonieren der Fahrbahnplatte werden verbessert. Um die Wirtschaftlichkeit dieses Bauverfahrens zu optimieren, müssen allerdings auch noch nicht ausreichend gelöste Problematiken, wie die Verbindungen der Fertigteilplatten, weiterentwickelt werden. Im folgenden wird dies näher erläutert, wobei auch neue Lösungsmöglichkeiten vorgestellt werden.

  • 19.
    Collin, Peter
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Construction Engineering.
    Möller, Mikael
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Construction Engineering.
    Johansson, Bernt
    Lateral-torsional buckling of continuous bridge girders1998In: Journal of constructional steel research, ISSN 0143-974X, E-ISSN 1873-5983, Vol. 45, no 2, p. 217-235Article in journal (Refereed)
    Abstract [en]

    The resistance of bridge girders with respect to lateral-torsional buckling at support is strongly influenced by the moment gradient. In most design methods this influence is taken into account by the use of a correct critical bending moment in the slenderness parameter λ. This critical moment is influenced by the shape of the moment diagram as well as the distortion of the cross-section and the restraint from the web and stiffeners, if any. In this paper, a method for the calculation of the critical moment is presented. A further effect of the moment gradient is that the stresses due to lateral bending of the flange in connection with lateral-torsional buckling does not coincide with the maximum of stresses caused by bending in the vertical plane. This is taken into account by performing the check for lateral-torsional buckling in a design section at some distance from the support. A design procedure based on this concept has been introduced in Eurocode 3 Part 2: Steel Bridges

  • 20.
    Cremona, C.
    et al.
    LCPC.
    Patron, A.
    LCPC.
    Johansson, Bernt
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Fire Engineering.
    Larsson, Tobias
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Construction Engineering.
    Eichler, B.
    RWTH.
    Höhler, S.
    RWTH.
    Kühn, B.
    PSP Aachen.
    Improved Assessment Methods for Static and Fatigue Resistance of Old Steel Railway Bridges2007Report (Refereed)
    Abstract [en]

    The present section of Deliverable D.4.3 is dedicated to the static and fatigue assess-ment of old metal bridges. It forms the basis of the Chapter 7 guideline developed in work package 4 (WP4) “Guideline for Load and Resistance Assessment of Existing European Railway Bridges”. This section is divided into four parts related to the four research activities of the WP4 metal subgroup:

    – Analysis of material properties of existing metal railway bridges, – Fatigue of riveted structure,

    – Updated assessment methods for riveted structures,

    – Enhanced non destructive techniques for inspecting riveted structures.

    Download full text (pdf)
    SB 4.6
  • 21.
    Cremona, Christian
    et al.
    Technical Centre for Bridge Engineering, Service d'Etudes sur les Transports, les Routes et leurs Aménagements (SETRA), 110 rue de Paris, F-77171 Sourdun, France.
    Eichler, Bjorn
    Rheinisch-Westfaelische Technische Hochschule (RWTH) Institute of Steel Construction, Mies-van-der-Rohe-Straße 1, D-52074 Aachen, Germany.
    Johansson, Bernt
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Construction Engineering.
    Larsson, Tobias
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Construction Engineering.
    Improved assessment methods for static and fatigue resistance of old metallic railway bridges2013In: Journal of Bridge Engineering, ISSN 1084-0702, E-ISSN 1943-5592, Vol. 18, no 11, p. 1164-1173Article in journal (Refereed)
    Abstract [en]

    A large number of the bridges in the European railway networks are metallic bridges. The increasing volume of traffic and axle weight of trains mean that for many structures the loads today are much higher than those envisaged when they were designed. This paper presents a summary of the different recommendations and advices proposed in "Guidelines for Load and Resistance Assessment of Existing European Railway Bridges" of the European Union founded project "Sustainable bridges" for assessing old metal railway bridges. The knowledge of the material properties of existing metal bridges is essential for the resistance assessment and the determination of the remaining lifetime of old metallic bridges. Furthermore, old bridges require more exact and efficient assessment methods that call for a precise description of the material. Among the problems met in metal bridges and material properties estimation, fatigue is the most common cause of failure. To be able to make accurate assessments of existing bridges, it is important to know the behaviour of bridges exposed to fatigue, and how the old materials behave due to cyclic exposure. The main question answered herein is how to make a safe estimation concerning the remaining life in service. The possible traffic load on steel rail bridges is usually limited by the fatigue resistance, but for certain situations the static resistance has also to be checked. Most design rules for steel structures, for instance those in Eurocode 3, are applicable also to riveted structures. However, some information is missing on how to deal with the special case that elements are intermittently connected in contrast welded structures that are connected continuously. As the traditional methods for assessing the resistance of steel bridges are based on elastic analysis, a method for utilizing a limited redistribution of bending moments based on beam theory is proposed.

  • 22.
    Elfgren, Lennart
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Fire Engineering.
    Grennberg, Torsten
    Luleå University of Technology.
    Horrigmoe, Geir
    Luleå University of Technology.
    Axelsson, Kennet B. E.
    Luleå University of Technology.
    Johansson, Bernt
    Institutionen för Anläggningsteknik. Verksamhetsberättelse 1986/871987Report (Other (popular science, discussion, etc.))
    Download full text (pdf)
    FULLTEXT01
  • 23.
    Elfgren, Lennart
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Fire Engineering.
    Horrigmoe, Geir
    Luleå University of Technology.
    Grennberg, Torsten
    Luleå University of Technology.
    Axelsson, Kennet B. E.
    Luleå University of Technology.
    Johansson, Bernt
    Institutionen för Anläggningsteknik - Verksamhetsberättelse 1985/861986Report (Other (popular science, discussion, etc.))
    Download full text (pdf)
    FULLTEXT01
  • 24.
    Graciano, Carlos
    et al.
    Luleå University of Technology.
    Johansson, Bernt
    Resistance of longitudinally stiffened I-girders subjected to concentrated loads2003In: Journal of constructional steel research, ISSN 0143-974X, E-ISSN 1873-5983, Vol. 59, no 5, p. 561-586Article in journal (Refereed)
    Abstract [en]

    This paper presents a design procedure for the determination of the ultimate resistance of longitudinally stiffened girder webs to concentrated loads. The influence from the longitudinal stiffener is considered in the slenderness parameter λ, through the buckling coefficient kf. This procedure is harmonized with other design procedures currently used for describing buckling problems in steel structures. An expression is developed for the buckling coefficient based on finite element analysis. The interaction between the web plate with flanges and a longitudinal stiffener was considered in the analysis. The ultimate strength according to the design procedure presented herein and the results are compared with available experimental results. The interaction with bending is also investigated

  • 25.
    Hällmark, Robert
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Construction Engineering.
    Collin, Peter
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Construction Engineering.
    Petursson, Hans
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Construction Engineering.
    Johansson, Bernt
    Simulation of low-cycle fatigue in integral abutment piles2007In: Improving Infrastructure Worldwide: IABSE symposium, Weimar 2007, [September 19 - 21, 2007] ; report / [ed] Ulrike Kuhlmann, Zürich: International Association for Bridge and Structural Engineering, 2007Conference paper (Refereed)
    Abstract [en]

    Integral abutment bridges are bridges without any expansion joints, and their largest benefits are the lower construction- and maintenance costs. In order to build longer integral bridges it might be necessary to allow plastic hinges to be developed in the piles. Lateral thermal movements are the major reason to plastic deformations, and since temperature variations are cyclic it has to be proved that low-cycle fatigue will not occur. A simulation of the pile strain spectra should be able to take into account the strains caused by temperature variations and traffic loads. Such a model has been created from real temperature data and traffic loads measured by Bridge-Weigh-In-Motion technology. Monte Carlo simulations have been performed in order to simulate daily and annual temperature changes as well as the varying traffic loads. Piles strains have been calculated, and their fatigue effect has been evaluated.

    Download full text (pdf)
    FULLTEXT01
  • 26. Höglund, Torsten
    et al.
    Johansson, Bernt
    Fästdon och förband i stålkonstruktioner: handbok och kvalitetsrekommendationer2001Book (Other academic)
  • 27. Johansson, Bernt
    Att konstruera med stål : läromedel för konstruktörer: Modul 4, Bärverksanalys2006Other (Other (popular science, discussion, etc.))
  • 28. Johansson, Bernt
    Att konstruera med stål : läromedel för konstruktörer: Modul 5, Tvärsnittsbärförmåga2006Other (Other (popular science, discussion, etc.))
  • 29. Johansson, Bernt
    Attacken mot World Trade Center2001In: V-byggaren : väg- och vattenbyggaren, ISSN 0283-5363, no 6, p. 9-12Article in journal (Other academic)
  • 30. Johansson, Bernt
    Design of plated structures according to Eurocode 3 Part 1.51998In: Proceedings / Nordic Steel Construction Conference 98: Bergen, Norway, September 14th - 16th, 1998 ; new materials, new codes, new applications, Oslo: Norwegian Steel Association , 1998, p. 125-136Conference paper (Refereed)
    Abstract [en]

    Eurocode 3 Part 1.5 Supplementary rules for planar plated structures without transverse loading has been developed together with the Eurocode 3-2 Steel bridges. It covers stiffened and unstiffened plates in common steel bridges and similar structures. This paper presents the new design rules with focus on the ultimate limit states and gives some comparisons with the old rules in Eurocode 3-1-1.

  • 31. Johansson, Bernt
    Eurocodes: tillbaka till detaljreglering1996In: Byggforskning : Byggforskningsrådets tidning för en bättre byggd miljö, ISSN 1102-3686, no 3, p. 24-25Article in journal (Other (popular science, discussion, etc.))
  • 32. Johansson, Bernt
    Eurokod 3 - Stålkonstruktioner2006In: V-byggaren : väg- och vattenbyggaren, ISSN 0283-5363, no 2, p. 48-52Article in journal (Other (popular science, discussion, etc.))
    Abstract [sv]

    Det var år 1975 och jag deltog i ett informationsmöte i Bryssel där en stolt representant för den dåvarande EEC-kommisionen presenterade projektet Eurocodes. Det skulle ge EEC gemensamma konstruktionsregler för befrämjande av en fri byggmarknad inom gemenskapen. Projektet skulle ta tre år och jag minns att jag log åt tidplanen eftersom jag redan då hade prövat på att harmonisera nordiska byggbestämmelser.

    Download full text (pdf)
    FULLTEXT01
  • 33. Johansson, Bernt
    Eurokod 4 del 1.1: Samverkanskonstruktioner stål och betong2005In: V-byggaren : väg- och vattenbyggaren, ISSN 0283-5363, no 6, p. 35-38Article in journal (Other (popular science, discussion, etc.))
  • 34. Johansson, Bernt
    Influence of material parameters on the stability of steel structures1994In: Advanced structures in extra high strength steels: a seminar in Oxelösund on the 5th of July 1994, Stålbyggnadsinstitutet , 1994Conference paper (Refereed)
  • 35.
    Johansson, Bernt
    Luleå University of Technology.
    Mitt liv med byggregler2009Other (Other (popular science, discussion, etc.))
    Download full text (pdf)
    fulltext
  • 36. Johansson, Bernt
    Ny metod för brobygge: pilotprojekt i Medelpad1991In: Tidningen Byggindustrin, ISSN 0349-3733, no 35, p. 22-23Article in journal (Other (popular science, discussion, etc.))
    Abstract [sv]

    Artikel om samverkansbro i Kölsillre

  • 37. Johansson, Bernt
    Om kvalitetssäkring och byggnadsskador1989In: V-byggaren : väg- och vattenbyggaren, ISSN 0283-5363, no 3Article in journal (Other (popular science, discussion, etc.))
  • 38. Johansson, Bernt
    Stålkonstruktioner1987Report (Other academic)
  • 39. Johansson, Bernt
    Uppskattning av stålbroars livslängd1993Conference paper (Other academic)
  • 40. Johansson, Bernt
    Use and design of high strength steel structures2002In: Revue de métallurgie (Imprimé), ISSN 0035-1563, E-ISSN 1156-3141, Vol. 99, no 23, p. 72-73Article in journal (Refereed)
    Abstract [en]

    High strength steel (HSS) is a concept that changes with time. The steel industry leads the development but the construction industry is conservative and slow in adopting the new grades. Hence, the volumes of HSS are small (but profitable for the steel maker). Hot rolled sections are today available in grades up to S460 as TM-steel. Plates of QT-steel are commercially available in grades up to S1100 although not yet standardized above S960. The price increase is less than the increase of the yield strength and it is therefore always economical to use HSS in structures where the strength can be fully utilized. Considering also the fabrication costs it is even more favourable to use HSS. Reduced cost is not the only reason for using HSS. in some applications the reduction of the weight is an important advantage because the payload can be increased. This is the case for vehicles and for mobile cranes and in these applications HSS is already widespread. An increasingly important concern is the environment and more specifically the use of energy and raw material. By using HSS less resources are spent for fulfilling a given function. Environmental concern is therefore a valid reason for using HSS. For each application and type of structural solution there is an upper limit for the strength that can be utilized. Other requirements, like deflection limitations or fatigue may govern or instability phenomena may reduce the advantage of HSS. The conclusion from this fact is that new structural forms and details have to be developed in order to increase this limit. Such development is rarely possible in connection with routine design so it has to be done in separate projects paid by industry or government funds.

  • 41.
    Johansson, Bernt
    Luleå University of Technology.
    Use and design of high strength steel structures: [Conception et utilisation des structures en aciers à haute résistance]2003In: Revue de métallurgie (Imprimé), ISSN 0035-1563, E-ISSN 1156-3141, Vol. 100, no 11, p. 1115-1123Article in journal (Refereed)
    Abstract [en]

    High strength steel is an interesting alternative for making steel structures more competitive, its production and use in Europe is small compared to markets as Japan and USA. It would be of mutual benefit for producers and users if the use increased. The paper gives examples of successful use and a state of art concerning design of such structures. Possibilities for further development and obstacles to be overcome are also discussed.

  • 42. Johansson, Bernt
    et al.
    Alpsten, Göran
    Svetsförband i ingjutningsgods: anvisningar för dimensionering, utförande och kontroll1989Book (Other academic)
  • 43.
    Johansson, Bernt
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Construction Engineering.
    Axelsson, Kennet B. E.
    Luleå University of Technology.
    Elfgren, Lennart
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Fire Engineering.
    Grennberg, Torsten
    Luleå University of Technology.
    Klisinski, Marek
    Luleå University of Technology. Polish Academy of Sciences, Institute of Fundamental Technological Research.
    Forskning och undervisning 1991/92 - 1992/93: Institutionen för Anläggningsteknik1992Report (Other (popular science, discussion, etc.))
    Download full text (pdf)
    FULLTEXT01
  • 44.
    Johansson, Bernt
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Construction Engineering.
    Axelsson, Kennet B. E.
    Luleå University of Technology.
    Grennberg, Torsten
    Luleå University of Technology.
    Almgren, Gunnar
    Luleå University of Technology.
    Lindqvist, Per-Arne
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Stillborg, Bengt
    Luleå University of Technology.
    Klisinski, Marek
    Luleå University of Technology.
    Elfgren, Lennart
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Fire Engineering.
    Institutionen för Väg- och Vattenbyggnad. Årsberättelse 1993/94 - 1994/951994Report (Other (popular science, discussion, etc.))
    Download full text (pdf)
    FULLTEXT01
  • 45.
    Johansson, Bernt
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Construction Engineering.
    Axelsson, Kennet B. E.
    Luleå University of Technology.
    Klisinski, Marek
    Luleå University of Technology. Polish Academy of Sciences, Institute of Fundamental Technological Research.
    Grennberg, Torsten
    Luleå University of Technology.
    Almgren, Gunnar
    Luleå University of Technology.
    Lindqvist, Per-Arne
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Stillborg, Bengt
    Luleå University of Technology. Swedish Mineral Research Foundation, Sweden.
    Elfgren, Lennart
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Fire Engineering.
    Institutionen för Väg- och Vattenbyggnad. Verksamhetsberättelse 1992/93 - 1993/941993Report (Other (popular science, discussion, etc.))
    Download full text (pdf)
    FULLTEXT01
  • 46. Johansson, Bernt
    et al.
    Boström, Staffan
    Nya tider, nya skruvar1990In: V-byggaren : väg- och vattenbyggaren, ISSN 0283-5363, no 5-6Article in journal (Other academic)
  • 47. Johansson, Bernt
    et al.
    Collin, Peter
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Construction Engineering.
    Betola samverkansbjälklag: rapport december 19871987Report (Other academic)
  • 48. Johansson, Bernt
    et al.
    Collin, Peter
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Construction Engineering.
    High strength steel - the construction material of the future1999In: Steel and composite structures: international conference, 24 and 25 February 1999, Delft, The Netherlands : proceedings / [ed] J. W. P. M. Brekelmans; A W Tomà, Rijswijk: TNO Building and Construction Research , 1999, p. 11.1-11.14Conference paper (Refereed)
  • 49.
    Johansson, Bernt
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Construction Engineering.
    Grennberg, Torsten
    Luleå University of Technology.
    Almgren, Gunnar
    Luleå University of Technology.
    Lindqvist, Per-Arne
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Stillborg, Bengt
    Luleå University of Technology. Swedish Mineral Research Foundation, Sweden.
    Axelsson, Kennet B. E.
    Luleå University of Technology.
    Klisinski, Marek
    Luleå University of Technology.
    Vikström, Lars
    Luleå University of Technology.
    Forsman, Bo
    Luleå University of Technology.
    Elfgren, Lennart
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Fire Engineering.
    Department of Civil and Mining Engineering. Annual Report 1994-951995Report (Other (popular science, discussion, etc.))
    Download full text (pdf)
    FULLTEXT01
  • 50. Johansson, Bernt
    et al.
    Hedin, Johan
    Infrastrukturen hämmas av missvisning i budgeten1992In: Dagens Industri, ISSN 0346-640X, p. 5-Article in journal (Other (popular science, discussion, etc.))
12 1 - 50 of 76
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf