Ändra sökning
Avgränsa sökresultatet
1 - 27 av 27
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Bauer, Tobias
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geovetenskap och miljöteknik.
    Andersson, Joel
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geovetenskap och miljöteknik. LKAB, Malmberget.
    Sarlus, Zimer
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geovetenskap och miljöteknik.
    Lund, Cecilia
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Kearney, Thomas
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geovetenskap och miljöteknik.
    Structural controls on the setting, shape and hydrothermal alteration of the Malmberget IOA deposit, northern Sweden2018Ingår i: Economic geology and the bulletin of the Society of Economic Geologists, ISSN 0361-0128, E-ISSN 1554-0774, Vol. 113, nr 2, s. 377-395Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The Malmberget iron oxide-apatite (IOA) deposit in northern Sweden is one of the largest underground iron ore mine operations in the world with estimated ore reserves in 2015 of 346 million metric tons (Mt) at 42.5% Fe. The underground operation is concentrated in 10 orebodies of 5 to 245 Mt each, which currently produce 17.4 Mt of apatite iron ore per year. Structural investigations were combined with data on hydrothermal mineral assemblages in order to reconstruct the relative timing of ore-forming, deformation, and overprinting hydrothermal events. The results improve the understanding of structural geometries, relationships, and control on orebody transposition in the deposit. A first compressional event (D1) around 1.88 Ga represents the main metamorphic event (M1) in the area and was responsible for a strong transposition of potential primary layering and the orebodies and led to the formation of a composite S0/1 fabric. A subsequent F2 folding event around 1.80 Ga resulted in the formation of an open, slightly asymmetric synform with a steeper southeast limb and a roughly SW-plunging fold axis. The result of structural modeling implies that the ore formed at two separate horizons. The folding was accompanied by stretching, resulting in boudinage of the iron orebodies. D2-related high-strain zones and syntectonic granites triggered the remobilization of amphibole, biotite, magnetite, and hematite and controlled the formation of iron oxide-copper-gold (IOCG)-type hydrothermal alteration, including an extensive K-feldspar alteration accompanied with sulfides, scapolite, and epidote. This shows a distinct time gap of at least 80 m.y. between the formation of iron oxides and sulfides. Brittle structures and the lack of an axial planar parallel fabric in conjunction with previous results suggest upper crustal, low-pressure, and high-temperature conditions during this D2 deformation phase, indicating a hydrothermal event rather than a purely regional metamorphic compression. It is proposed in the present study that the Malmberget IOA deposit was deformed and metamorphosed during a 1.88 Ga crustal shortening event. Moreover, the Malmberget IOA deposit was affected by a 1.8 Ga folding and hydrothermal event that is related to a regional IOCG overprint.

  • 2.
    Guntoro, Pratama Istiadi
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Tiu, Glacialle
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geovetenskap och miljöteknik.
    Ghorbani, Yousef
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Lund, Cecilia
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Rosenkranz, Jan
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Application of machine learning techniques in mineral phase segmentation for X-ray microcomputed tomography (µCT) data2019Ingår i: Minerals Engineering, ISSN 0892-6875, E-ISSN 1872-9444, Vol. 142, artikel-id 105882Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    X-ray microcomputed tomography (µCT) offers a non-destructive three-dimensional analysis of ores but its application in mineralogical analysis and mineral segmentation is relatively limited. In this study, the application of machine learning techniques for segmenting mineral phases in a µCT dataset is presented. Various techniques were implemented, including unsupervised classification as well as grayscale-based and feature-based supervised classification. A feature matching method was used to register the back-scattered electron (BSE) mineral map to its corresponding µCT slice, allowing automatic annotation of minerals in the µCT slice to create training data for the classifiers. Unsupervised classification produced satisfactory results in terms of segmenting between amphibole, plagioclase, and sulfide phases. However, the technique was not able to differentiate between sulfide phases in the case of chalcopyrite and pyrite. Using supervised classification, around 50–60% of the chalcopyrite and 97–99% of pyrite were correctly identified. Feature based classification was found to have a poorer sensitivity to chalcopyrite, but produced a better result in segmenting between the mineral grains, as it operates based on voxel regions instead of individual voxels. The mineralogical results from the 3D µCT data showed considerable difference compared to the BSE mineral map, indicating stereological error exhibited in the latter analysis. The main limitation of this approach lies in the dataset itself, in which there was a significant overlap in grayscale values between chalcopyrite and pyrite, therefore highly limiting the classifier accuracy.

  • 3.
    Koch, Pierre-Henri
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Lund, Cecilia
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Rosenkranz, Jan
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Automated drill core mineralogical characterization method for texture classification and modal mineralogy estimation for geometallurgy2019Ingår i: Minerals Engineering, ISSN 0892-6875, E-ISSN 1872-9444, Vol. 136, s. 99-109Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In geometallurgy, a process model operating at the mineral liberation level needs quantitative textural information about the ore. The utilization of this information within process modeling and simulation will increase the quality of the predictions.

    In this study, descriptors derived from color images and machine learning algorithms are used to group drill core intervals into textural classes and estimate mineral maps by automatic pixel classification. Different descriptors and classifiers are compared, based on their accuracy and capacity to be automated. Integration of the classifier approach with mineral processing simulation is also demonstrated. The quantification of textural information for mineral processing simulation introduced new tools towards an integrated information flow from the drill cores to a geometallurgical model.

    The approach has been verified by comparing traditional geological texture classification against the one obtained from automatic methods. The tested drill cores are sampled from a porphyry copper deposit located in Northern Sweden.

  • 4.
    Lamberg, Pertti
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Lund, Cecilia
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Taking Liberation Information into a Geometallurgical Model: Case Study Malmberget, Northern Sweden2012Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    Geometallurgical model aims to capture geological and metallurgical variation of an ore in a 3D map. This is an important part of production planning and management. In creating such a model geological and metallurgical information is combined but current practices almost solely ignore the liberation information. This paper describes a technique how this important data can be taken into a geometallurgical model. Malmberget, the case study iron ore in Northern Sweden, consists of several ore lenses with variable mineralogy illustrated e.g. in magnetite-hematite ratio. Modal mineralogy does not fully explain the metallurgical response. To include ore texture and mineral liberation factors two sub-models were created based on liberation analyses of metallurgical testing and the Particle Tracking technique. Consequently, for each ore block, the particle breakage model gives the liberation distribution. Thereafter the process model, consisting of unit operations with property based models, forecasts the metallurgical response.

  • 5.
    Lamberg, Pertti
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Parian, Mehdi
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Lund, Cecilia
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Using Mineral rather than Elemental Grades in Mineral Resource Estimate: Motivation and Techniques2015Ingår i: Mineral Resources in a Sustainable World / [ed] A.S. Andre-Mayer; M. Cathelineau; P. Muchez; E. Pirard; S. Sindern, 2015, s. 1423-1425Konferensbidrag (Refereegranskat)
    Abstract [en]

    Mineral resource estimates of metallic ores use traditionally elemental grades when describing the quality of the deposit. This information is very defective as it does not take into account how much of metal is recoverable. When considering the processing properties of an ore, i.e. geometallurgy, more comprehensive picture could be received if the resource model would report mineral grades rather than elemental grades. This is because minerals define the value and possible processing options of the deposit. Techniques commonly used for an analysis of mineral composition, i.e. modal analysis, are either tedious or poor in quality. This paper shows with few examples how reliable modal analysis can be done by combining diagnostic analysis methods with element to mineral conversion.

  • 6.
    Lamberg, Pertti
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriell miljö- och processteknik.
    Rosenkranz, Jan
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriell miljö- och processteknik.
    Wanhainen, Christina
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geovetenskap och miljöteknik.
    Lund, Cecilia
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriell miljö- och processteknik.
    Minz, Friederike
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geovetenskap och miljöteknik.
    Mwanga, Abdul
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriell miljö- och processteknik.
    Parian, Mehdi
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriell miljö- och processteknik.
    Building a Geometallurgical Model in Iron Ores using a Mineralogical Approach with Liberation Data2013Ingår i: Geomet13: The Second AusIMM International Geometallurgy Conference 2013 / [ed] Simon Dominy, Parkville, Victoria: The Australasian Institute of Mining and Metallurgy, 2013, s. 317-324Konferensbidrag (Refereegranskat)
    Abstract [en]

    A geometallurgical model is currently built in two different ways. The first and the most common way relies on geometallurgical testing, where a large number of samples are analysed for metallurgical response using small-scale laboratory tests, eg Davis tube testing. The second, mineralogical approach focuses on collecting mineralogical information over the orebody and building the metallurgical model based on mineralogy. At Luleå University of Technology,Sweden, the latter method has been adopted and taken further in four ongoing PhD studies. The geological model gives modal composition by the help of element-to-mineral conversion and Rietveld X-ray diffraction. Texturally, the orebody is divided into different archetypes, and liberation measurements for each of them are carried out in processing fineness using IncaMineral, a SEM-based technique. The grindability and liberation spectrum of any given geological unit (sample, ore block, domain) are extrapolated from the archetypes. The process model is taken into a liberation level by mass balancing selected metallurgical tests using the particle tracking technique. The approach is general and can be applied to any type of ores. Examples of ongoing studies on iron and massive sulfide ores are given.

  • 7.
    Lishchuk, Viktor
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Koch, Pierre-Henri
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Lund, Cecilia
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Lamberg, Pertti
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    The geometallurgical framework: Malmberget and Mikheevskoye case studies2015Ingår i: Mining Science, ISSN 2300-9586, Vol. 22, nr Special Issue 2, s. 57-66Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Geometallurgy is a growing area within a mineral processing industry. It brings together tasks of geologists and mineral processing engineers to do short and medium term production planning. However, it is also striving to deal with long term tasks such as changes in either production flow sheet or considering different scenarios. This paper demonstrates capabilities of geometallurgy through two case studies from perspective of Minerals and Metallurgical Engineering division Lulea University of Technology. A classification system of geometallurgical usages and approaches was developed in order to describe a working framework. A practical meaning of classification system was proved in two case studies: Mikheevskoye (Russia) and Malmberget (Sweden) projects. These case studies, where geometallurgy was applied in a rather systematic way, have shown the amount of work required for moving the project within the geometallurgical framework, which corresponds to shift of the projects location within the geometallurgical classification system.

  • 8.
    Lishchuk, Viktor
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Lamberg, Pertti
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Lund, Cecilia
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Classification of Geometallurgical Programs Based on Approach and Purpose2015Ingår i: Mineral Resources in a Sustainable World / [ed] A.S. Andre-Mayer; M. Cathelineau; P. Muchez; E. Pirard; S. Sindern, 2015, s. 1431-1434Konferensbidrag (Refereegranskat)
    Abstract [en]

    Geometallurgy is a rapidly developing holistic approach for combining geological and metallurgical information for production management purposes in mining operations. The industrial application of geometallurgy is called a geometallurgical program and one of the largest challenges within geometallurgical programs is to select appropriate methods for resource characterization. Aim of such characterization is the prediction of metallurgical performance of different ore types and geometallurgical domains with the required accuracy. More than 25 geometallurgical programs from mining operations around the world were reviewed and a classification system developed with aim to clarify how geometallurgy is used and what methods are applied. The result is summarized as a two-dimensional classification which illustrates what geometallurgical approaches are used and how collected data is applied. In addition the proposed classification system gives a perspective of what are the minimum requirements for a geometallurgical program at different levels of application and who are the main participants that should be engaged in a geometallurgical program. The classification system can also be used as a reference system for benchmarking of different geometallurgical endeavours.

  • 9.
    Lishchuk, Viktor
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Lamberg, Pertti
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Lund, Cecilia
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Classification of geometallurgical programs based on approach and purpose2015Konferensbidrag (Refereegranskat)
    Abstract [en]

    Geometallurgy is a rapidly developing holistic approach for combining geological and metallurgical information for production management purposes in mining operations. The industrial application of geometallurgy is called a geometallurgical program and one of the largest challenges within geometallurgical programs is to select appropriate methods for resourcecharacterization. Aim of such characterization is the prediction of metallurgical performance of different ore types and geometallurgical domains with the required accuracy.More than 25 geometallurgical programs from mining operations around the world were reviewed and a classification system developed with aim to clarify how geometallurgy is used and what methods are applied. The result is summarized as a two-dimensional classification which illustrates what geometallurgical approaches are used and how collected data is applied.In addition the proposed classification system gives a perspective of what are the minimum requirements for a geometallurgical program at different levels ofapplication and who are the main participants that should be engaged in a geometallurgical program. The classification system can also be used as a reference system for benchmarking of different geometallurgicalendeavours.

  • 10.
    Lishchuk, Viktor
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Lamberg, Pertti
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Lund, Cecilia
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Evaluation of sampling in geometallurgical programs through synthetic deposit model2016Ingår i: IMPC 2016: XXVIII International Mineral Processing Congress Proceedings, 2016Konferensbidrag (Refereegranskat)
    Abstract [en]

    The main purpose of geometallurgy is to develop a model to predict the variability in the mineralprocessing performance within the ore body. Geometallurgical tests used for developing such a model need to be fast, practical and inexpensive and include as an input data relevant and measureable geological parameters like elemental grades, mineral grades and grain size. Important in each geometallurgical program is to define the number of samples needed to be sent for geometallurgical testing to enable reliable metallurgical forecast. This is, however, a complicated question that does not have a generic answer.To study the question on sampling a simulation environment was built including a synthetic orebody and sampling & assaying module. A synthetic Kiruna type iron oxide - apatite deposit was established based on case studies of Malmberget ore. The synthetic ore body includes alike variability in rock types, modal mineralogy, chemical composition, density and mineral textures as its real life counterpart. The synthetic ore body was virtually sampled with different sampling densities for a Davis tube testing, a geometallurgical test characterising response in magnetic separation. Based on the test results a forecast for the processing of the whole ore body was created. The forecasted parameters included concentrate tonnages, iron recovery and concentrate quality in terms of iron, phosphorous and silica contents.The study shows that the number of samples required for forecasting different geometallurgicalparameters varies. Reliable estimates on iron recovery and concentrate mass pull can be made with about 5-10 representative samples by geometallurgical ore type. However, when the concentrate quality in terms of impurities needs to be forecasted, the sample number is more than 20 times higher. This is due to variation in mineral liberation and shows the importance of developing techniques to collect qualitative information on mineral and ore textures in geometallurgy.

  • 11.
    Lishchuk, Viktor
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Lamberg, Pertti
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Lund, Cecilia
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Evaluation of sampling in geometallurgical programs through synthetic deposit model2016Ingår i: (IMPC 2016), Canadian Institute of Mining, Metallurgy and Petroleum, 2016Konferensbidrag (Refereegranskat)
    Abstract [en]

    The main purpose of geometallurgy is to develop a model to predict the variability in the mineralprocessing performance within the ore body. Geometallurgical tests used for developing such a model need to be fast, practical and inexpensive and include as an input data relevant and measureable geological parameters like elemental grades, mineral grades and grain size. Important in each geometallurgical program is to define the number of samples needed to be sent for geometallurgical testing to enable reliable metallurgical forecast. This is, however, a complicated question that does not have a generic answer.

    To study the question on sampling a simulation environment was built including a synthetic orebody and sampling & assaying module. A synthetic Kiruna type iron oxide - apatite deposit was established based on case studies of Malmberget ore. The synthetic ore body includes alike variability in rock types, modal mineralogy, chemical composition, density and mineral textures as its real life counterpart. The synthetic ore body was virtually sampled with different sampling densities for a Davis tube testing, a geometallurgical test characterising response in magnetic separation. Based on the test results a forecast for the processing of the whole ore body was created. The forecasted parameters included concentrate tonnages, iron recovery and concentrate quality in terms of iron, phosphorous and silica contents.

    The study shows that the number of samples required for forecasting different geometallurgicalparameters varies. Reliable estimates on iron recovery and concentrate mass pull can be made with about 5-10 representative samples by geometallurgical ore type. However, when the concentrate quality in terms of impurities needs to be forecasted, the sample number is more than 20 times higher. This is due to variation in mineral liberation and shows the importance of developing techniques to collect qualitative information on mineral and ore textures in geometallurgy.

  • 12.
    Lishchuk, Viktor
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Lund, Cecilia
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Ghorbani, Yousef
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Evaluation and comparison of different machine-learning methods to integrate sparse process data into a spatial model in geometallurgy2019Ingår i: Minerals Engineering, ISSN 0892-6875, E-ISSN 1872-9444, Vol. 134, s. 156-165Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A spatial model for process properties allows for improvedproduction planning in mining by considering the process variability ofthe deposit. Hitherto, machine-learning modelling methods have beenunderutilised for spatial modelling in geometallurgy. The goal of thisproject is to find an efficient way to integrate process properties (ironrecovery and mass pull of the Davis tube, iron recovery and mass pull ofthe wet low intensity magnetic separation, liberation of iron oxides, andP_80) for an iron ore case study into a spatial model using machinelearningmethods. The modelling was done in two steps. First, the processproperties were deployed into a geological database by building nonspatialprocess models. Second, the process properties estimated in thegeological database were extracted together with only their coordinates(x, y, z) and iron grades and spatial process models were built.Modelling methods were evaluated and compared in terms of relativestandard deviation (RSD). The lower RSD for decision tree methodssuggests that those methods may be preferential when modelling non-linearprocess properties.

  • 13.
    Lishchuk, Viktor
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Lund, Cecilia
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Koch, Pierre-Henri
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Mattias, Gustafsson
    LKAB.
    Pålsson, Bertil
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Geometallurgical characterisation of Leveäniemi iron ore: Unlocking the patterns2019Ingår i: Minerals Engineering, ISSN 0892-6875, E-ISSN 1872-9444, Vol. 131, s. 325-335Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    As part of a geometallurgical program for the Leveänimei iron ore mine, the Davis tube was used as proxy to classify ore types, predict iron recoveries in wet low-intensity magnetic separation (WLIMS), and to estimate liberation of mixed particles. The study was conducted by testing 13 iron ore samples with a Davis tube and a laboratory WLIMS. Ore feed was studied for modal mineralogy and liberation distribution with Automated Scanning Electron Microscopy. Data analyses to detect the patterns and data dependencies were done with multivariate statistics: principal component analysis, and projection to latent structures regression. Results show that a simple index (XLTU) based on mass pull (yield) in the Davis tube is capable of easy classification of magnetite ores. Using Davis tube mass pull and iron recovery, together with iron and Satmagan head grades may predict iron recovery in WLIMS. Also, the variability in Fe-oxides liberation pattern for magnetite semi-massive ores can be explained with the chemical composition of the Davis tube concentrate. It is concluded that the Davis tube test is better used only for marginal ores, since iron oxide minerals tend to be fully liberated in high-grade magnetite massive ores after grinding. The developed models may be used in populating a production block model.

  • 14.
    Lishchuk, Viktor
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Lund, Cecilia
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Lamberg, Pertti
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Development of a Synthetic Ore Deposit Model for Geometallurgy2016Ingår i: Geomet16: Third AusIMM International Geometallurgy Conference 2016 : Conference Proceedings, Parkville, Victoria: The Australian Institute of Mining and Metallurgy , 2016, s. 275-286Konferensbidrag (Refereegranskat)
  • 15.
    Lishchuk, Viktor
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Lund, Cecilia
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Lamberg, Pertti
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Miroshnikova, Elena
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Simulation of a Mining Value Chain with a Synthetic Ore Body Model: Iron Ore Example2018Ingår i: Minerals, ISSN 2075-163X, E-ISSN 2075-163X, Vol. 8, nr 11, artikel-id 536Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Reconciliation of geological, mining and mineral processing information is a costly and time demanding procedure with high uncertainty due to incomplete information, especially during the early stages of a project, i.e., pre-feasibility, feasibility studies. Lack of information at those project stages can be overcome by applying synthetic data for investigating different scenarios. Generation of the synthetic data requires some minimum sparse knowledge already available from other parts of the mining value chain, i.e., geology, mining, mineral processing. This paper describes how to establish and construct a synthetic testing environment, or “synthetic ore body model” by integrating a synthetic deposit, mine production, constrained by a mine plan, and a simulated beneficiation process. The approach uses quantitative mineralogical data and liberation information for process simulation. The results of geological and process data integration are compared with the real case data of an apatite iron ore. The discussed approach allows for studying the implications in downstream processes caused by changes in upstream parts of the mining value chain. It also opens the possibility of optimising sampling campaigns by investigating different synthetic drilling scenarios including changes to the spacing between synthetic drill holes, composite length, drill hole orientation and assayed parameters.

  • 16.
    Lund, Cecilia
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geovetenskap och miljöteknik.
    Mineralogical, chemical and textural characterisation of the Malmberget iron ore deposit for a geometallurgical model2013Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    The northern Norrbotten ore province is an intensely mineralised area and has traditionally been a very important mining district. It contains Fe, Cu-Au, Au, and Ag deposits ranging from world-class ore deposits to small and uneconomic ones (Martinsson 2004). The most important are the Kiruna and Malmberget iron ores and the Aitik Cu-Au deposit.The cross-discipline approach called geometallurgy connects two different but closely related areas in the mining industry, namely geology and mineral processing. It involves understanding and measurements of the ore properties significant for its successful processing. Geometallurgy takes both the geological and mineral processing information to create a spatially-based (3D) predictive model for product management in mining operations (Lamberg, 2011).This case study investigates how to establish a geometallurgical model using the Malmberget iron ore deposit as a case study. A mineralogical approach (Lamberg 2011) was selected meaning that the focus is on mineralogy, and therefore parameters like modal mineralogy, mineral textures, mineral associations, mineral grain sizes and their relation to liberation characteristics are important. The main effort is to deliver a geological model which gives quantitative rather than descriptive information to be used in a process submodel.The ore characterisation (Papers I and II) gives new information on the chemical composition of minerals, mineralogical composition of both ore and host rocks, as well as the variation within the individual ore bodies. This sets a firm basis for the quantitative methods developed for routine analysis of modal mineralogy (Paper III) and mineral textures (Paper IV). Also, this increases the understanding regarding the primary origin and metamorphic evolution of the deposit, which is important since the origin of the apatite iron ore of the Kiruna type is still controversial.Based on the modal composition, preliminary geometallurgical (GEM) ore types were established for the Malmberget ore body. Each of these GEM-types describes quantitatively: the minerals present, their chemical composition, rules how to calculate the modal composition from routine chemical assays (element to mineral conversion, EMC rules) and a textural archetype in a library of archetypes. Using these GEM-types it is possible to calculate the modal mineralogy and the liberation distribution for every geological unit from the sample level to GEM-types to be further used in building a GEM block model of the ore.The applicability of the geological model was tested by developing a liberation based process model of simple one stage dry magnetic separation for the GEM-types. The model returns the metallurgical response, in terms of grade and recovery, of each of the developed GEM-types. The model was validated with another ore sample representing the same archetype from a different ore body and with a different grade. The model forecasted the recovery and concentrate grade within 2%-unit accuracy.This is the first published study where a full predictive geometallurgical model is entirely based on the mineralogy. The approach is a generic approach and valid not only for iron ores but also for other metallic mines.

  • 17.
    Lund, Cecilia
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geovetenskap och miljöteknik.
    Mineralogical, chemical and textural properties of the Malmberget iron deposit: a process mineralogically characterisation2009Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [sv]

    I den här avhandlingen förenas två olika, men i en gruvprocess närliggande discipliner, malmgeologi och processmineralogi. Det sker genom att studera de mineralogiska-texturella egenskaperna om hur malmen ser ut i fast klyft och hur malmkoncentratet beter sig i en anrikningsprocess. Fyndigheten som studerats är LKAB:s apatitjärnmalm i Malmberget. Apatitjärnmalmer (av Kirunatyp) finns på ett fåtal platser runt om i världen och de två mest betydande fyndigheterna bryts idag av LKAB i Kiruna och Malmberget. Sett till den globala järnmalm marknaden är produktionen liten men i en lokal skala är dessa höghaltiga järnmalmer av största ekonomiska vikt. Tre olika malmkroppar ingår i denna studie Hens, ViRi och Fabian. Dessa är karaktäriserade i avseende på mineralogi, kemi och texturella egenskaper. Det första manuskriptet (Paper І) beskriver malmmineralen kemiskt och texturellt med tyngdpunkten på inverkan av den metamorfa överpräglingen. Mineralogiskt är ViRi och Fabian liknande, med avseende på förekomsten av Ti-mineral, pyrit och kopparkis. Hens skiljer sig från dessa två malmkroppar genom förekomsten av hematit. Magnetit från olika malmkroppar och malmtyper visar en kemisk variation mellan elementen TiO2, V2O3, Al2O3 och MgO. Magnetit från den massiva delen av Fabian malmkropp har kemiska likheter med andra apatitjärnmalmer och kan ursprungligen ha bildats genom kristallisation från en järnoxidmagma eller genom hydrotermala processer under höga temperaturer. Magnetit från malmbreccia har bildats under lägre temperatur och andra hydrotermala förhållanden. Det andra och tredje manuskriptet handlar om processmineralogi. I manuskript två (Paper ІІ) görs en kvantitativ mineralogisk karaktärisering av malmkroppen Fabian mineralogiskt genom att använda ett automatiserat SEM baserat system kallat QEMSCAN®. Två olika malmtyper massiv malm och malmbreccia har nedkrossats och siktats i tre fraktioner 150µm, 75µm och 38µm. Det är stor skillnad mellan malmtyperna både i avseende på mineralogin men även deras texturella egenskaper. Den modala mineralogin visar att malm breccia innehåller högre andel gångartsmineral. Magnetit från malm har en hög frikrossningsgrad medan den är lägre för malmbreccia. Båda malmtyperna visar en minskande frikrossningsgrad i finare fraktioner. Detta är ett resultat av kornstorlek, mineralogi och textur av både magnetit och gångartsmineral. Mineralassociationerna i malmbreccia är fler och mer komplexa än i malm och oavsett om mineralassociationer med magnetit hamnar i koncentratet eller avfallet så ökar kiselhalten i koncentratet eller så ökar järnhalten i avfallet. Manuskript tre (Paper ІІІ) beskriver en metod att hitta spårbarhet i anrikningsprocessen i Malmberget genom att påvisa och identifiera signifikanta mineralogiska signaturer både i malmen (fast klyft) och i anrikningskoncentratet. Två möjliga mineralogiska signaturer påvisades. Det är dels en enkel association med halvkorn bestående av magnetit och apatit och dels en mer komplicerad textur där små magnetitkorn sitter som inneslutningar inne i fältspatskorn. Dessa identifierade signaturer kan förmodligen fungera som "fingeravtryck" för olika malmtyper, partikel fraktioner och malningskretsar och kan därigenom användas till spårbarhet genom processen.

  • 18.
    Lund, Cecilia
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Lamberg, Pertti
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Geometallurgy: A tool for better resource efficiency2014Ingår i: European Geologist Magazine, ISSN 1028-267X, nr 37, s. 39-43Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Higher environmental and socio-economic demands in the exploitation of the future mineral resources require comprehensive knowledge on ore bodies even in the early stages of the mining process. Geometallurgy combines geological and mineral processing information to create a spatial model for production planning and management. Applying a geometallurgical concept improves resource efficiency, reduces operational risks and helps in optimising production in such a way that sustainability and socio-economic factors also are considered. With a geometallurgical model it is possible to study different production scenario starting from exploration to the feasibility and production stages. There are some alternative ways for building a geometallurgical model but the mineralogical approach is generic and can be adopted to any kind of mineral resources. This paper describes how a concept like this has been used in the mining industry and demonstrates the benefits in terms of improved resource efficiency in different ore deposits.

  • 19.
    Lund, Cecilia
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Lamberg, Pertti
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Lindberg, Therese
    LKAB, Research & Development, 983 81 Malmberget.
    A new method to quantify mineral textures for geometallurgy2014Konferensbidrag (Övrigt vetenskapligt)
  • 20.
    Lund, Cecilia
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Lamberg, Pertti
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Lindberg, Therese
    LKAB, Research & Development, 983 81 Malmberget.
    Development of a geometallurgical framework to quantify mineral textures for process prediction2015Ingår i: Minerals Engineering, ISSN 0892-6875, E-ISSN 1872-9444, Vol. 82, s. 61-77Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A geometallurgical framework was developed in three steps using the Malmberget iron ore deposit, northern Sweden, as a case study. It is based on a mineralogical-particle approach which means that the mineralogical information is the main focus. Firstly, the geological model describes quantitatively the variation in modal composition and mineral textures within the ore body. Traditional geological textural descriptions are qualitative and therefore a quantitative method that distinguishes different mineral textures that can be categorised into textural archetypes was developed.The second step of the geometallurgical framework is a particle breakage model which forecasts how ore will break in comminution and which kind of particles will be generated. A simple algorithm was developed to estimate the liberation distribution for the progenies of each textural archetype. The model enables numerical prediction of the liberation spectrum as modal mineralogy varies. The third step includes a process model describing quantitatively how particles with varying particle size and composition behave in each unit process stage. As a whole the geometallurgical framework considers the geological model in terms of modal composition and textural type. The particle breakage model forecasts the liberation distribution of the corresponding feed to the concentration process and the process model returns the metallurgical response in terms of product quality (grade) and efficacy (recovery).

  • 21.
    Lund, Cecilia
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geovetenskap och miljöteknik.
    Lamberg, Pertti
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriell miljö- och processteknik.
    Lindberg, Therese
    LKAB, Research & Development, 983 81 Malmberget.
    Practical way to quantify minerals from chemical assays at Malmberget iron ore operations: an important tool for the geometallurgical program2013Ingår i: Minerals Engineering, ISSN 0892-6875, E-ISSN 1872-9444, Vol. 49, s. 7-16Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This is the first step in establishing a geometallurgical program for the Malmberget iron ore deposit, northern Sweden. Geometallurgy captures geological and metallurgical (processing) information into a spatially-based predictive model of mineral processing characteristics. This paper describes the development of a practical, fast and inexpensive technique to quantify minerals from routine chemical assays. Ore samples and process samples from two different orebodies were used in the process of developing this element to mineral conversion technique that involved electron microprobe (EPMA), X-ray fluorescence (XRF) and SATMAGAN analyses. The method was validated against QEMSCAN analyses. From the calculated modal mineralogy an ore classification system was established based on the iron mineralogy, iron mineral grades and gangue mineralogy to create a preliminary geological/geometallurgical model of the ore. However, in a geometallurgical context the modal composition is not sufficient and the geological model requires information on mineral textures, too.

  • 22.
    Lund, Cecilia
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geovetenskap och miljöteknik.
    Martinsson, Olof
    A characterising of the ore minerals due to mineralogical, chemical and textural properties in Malmberget2008Ingår i: Conference in Minerals Engineering 2008, Luleå: Luleå tekniska universitet, 2008, s. 71-80Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    This study was an attempt to find a way of characterising an iron ore body both mineralogical and textural in a quantitative manner by using analytical methods like optical microscopy, microprobe (EMPA) and an automatic SEM based system, Particle Texture Analysis (PTA). The source of this study is an iron ore body, called Fabian, located in Malmberget, Sweden. Two types of ores were identified and analysed in this study named "orebreccia" and "ore". The Particle Texture Analysis was made on two fractions of crushed ore. The mineralogy was evaluated and characterized as mineral liberation and mineral association. Magnetite has a simple outline and straight grain boundaries and the gangue minerals have a finer particle size with a more complicated texture. The liberation of magnetite in "ore" and "ore breccia" is high. The ore quality for both "ore" and "ore breccia" does have similarities in a process technique perspective.

  • 23.
    Lund, Cecilia
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Martinsson, Olof
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geovetenskap och miljöteknik.
    Oxide mineralogy and magnetite chemistry of the Malmberget apatite iron ore, Northern Norr2013Ingår i: 12th Biennial SGA Meeting: Mineral deposit research for a high-tech world, Uppsala: Geological Society of Sweden , 2013, s. 273-276Konferensbidrag (Refereegranskat)
    Abstract [en]

    The Malmberget deposit has produced morethan 600 Mt of ore and comprises several ore bodies thatexhibit different mineralogical, chemical and structuralfeatures. In the eastern part, the ore bodies occur asmassive lenses of magnetite surrounded by ore breccia,while the western part is characterized by hematitedominated ores. In contrast to most other apatite iron oresin Northern Norrbotten, the Malmberget deposit have beenstrongly affected by deformation, metamorphicrecrystallization and felsic intrusions.Variations in whole rock chemistry of the ores aremainly reflecting primary features with different signaturesfor massive ore and ore breccia, but also indicatingdifferent types of massive ore. Magnetite from ore brecciahave low content of trace elements similar to magnetitefrom IOCG deposits and may have formed byhydrothermal processes while magnetite in massive oreshow chemical characteristics typical for apatite iron ores.The chemistry of magnetite has in various extentsbeen modified due to element redistribution duringmetamorphic recrystallization and oxidation. Mostsignificant is the preferential partition of Ti and to someextent V into porphyroblasts of hematite. The formation ofilmenite and rutile affects the chemistry of magnetite andgives it a lower content of Ti and V and a signatureresembling magnetite from IOCG deposits.

  • 24.
    Lund, Cecilia
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geovetenskap och miljöteknik.
    Martinsson, Olof
    Trace-element chemistry of magnetite from the Malmberget apatite-iron deposit2008Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    Iron is the most used metal and it is mined from several different types of deposits. Those of a chemical-sedimentary origin dominate, but also deposits of hydrothermal or magmatic origin are important in some parts of the world. Due to an expanding market of iron ore and increased customer demands on product quality the producers has to meet this with a more detailed knowledge of their resources, including trace element composition of the iron oxides.Sweden is Europe's most important producer of iron ore with two large underground mines in Kiruna and Malmberget operated by LKAB. Both deposits are apatite iron ores, an ore type that is common in northern Sweden but rare in other parts of the world. These two world class deposits have a similar origin and were formed by magmatic-hydrothermal process at 1.89-1.88 Ga. However, the Malmberget ore is more strongly affected by later metamorphose, deformation and intrusion of granitic rocks.More than 20 different tabular to stock shaped ore bodies are known at Malmberget, occupying an area of 2.5 x 5km. The Malmberget deposit was probably from the beginning a more or less continuous ore lens which were exposed for at least two phases of folding and metamorphism. By strong ductile deformation it was torn into several lenses that today occupy a large-scale fold structure were the individual ore bodies stretches parallel to the fold axis, which plunge 40º-50º towards SSW. Due to the strong metamorphic overprinting of the area, the ore minerals are recrystallised, coarse grained, and elongated in the direction of the lineation of the rocks.The iron ore minerals are both magnetite (Fe3O4) and hematite (Fe2O3) with magnetite as the only iron oxide in most major ore bodies. Hematite dominates some minor ore bodies and is mixed with magnetite in others. The main gangue minerals are apatite, amphibole, pyroxene, feldspars, quartz and biotite. Among the accessory minerals are pyrite, chalcopyrite, titanite, zircons and calcite most common. Each ore body is characterised by its own mineral, chemical and textural properties. Magnetite belongs to the spinel group of minerals and besides the ferrides it may also contain Al and Mg substituting for Fe. Apatite iron ores, including the Malmberget deposit, are characterized by magnetite chemistry different to most other iron deposits. They typically have high vanadium content similar to magmatic segregations of magnetite in mafic rocks but a Ti content that is between magmatic and sedimentary iron deposits. Microprobe analyses of magnetite of different textures and from different ore types indicate that magnetite is not uniform in composition and the content of e.g. Al and Mg seem to be largely controlled by local chemical conditions with Al most enriched in ore of breccia style while Mg is highest in magnetite from massive ore.

  • 25.
    Lund, Cecilia
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Martinsson, Olof
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geovetenskap och miljöteknik.
    Lindberg, Therese
    LKAB, Research & Development, 983 81 Malmberget.
    Mineralogical-textural characterisation of different apatite-iron ore bodies, Malmberget deposit, Sweden, treated in a sorting process in laboratory scale2010Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    The Malmberget apatite iron ore deposit encloses more than twenty ore bodies which are mined separately but are blended in the mine before it is hoisted up to the sorting plant. The geology of the deposit shows metamorphic overprints and strong alteration which makes each individual ore body heterogeneous in its composition. In this study the aim is to be able to identify and quantify important mineralogical and textural characters of each ore body which will be part and impact the upgrading process. Two different ores bodies were processed in order to simulate a dry sorting process by bench scale measurements. The analytical methods for quantitative characterisation were optical microscopy and QEMSCAN®. Preliminary results show both differences and similarities between the ore bodies. The mineralogy composition differs between the ore bodies but the most important mineral associations for both ore bodies are binary magnetite/feldspar and magnetite/FeTi-oxides. The magnetite liberation is high for both ore bodies.

  • 26. Oghazi, Pejman
    et al.
    Lund, Cecilia
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geovetenskap och miljöteknik.
    Pålsson, Bertil
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriell miljö- och processteknik.
    Martinsson, Olof
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser.
    Applying traceability in a mine-to-mill context by using particle texture analysis2010Ingår i: SME Annual Meeting and Exhibit 2010: Phoenix, Arizona, USA, 28 February - 3 March 2010, Red Hook, NY: Curran Associates, Inc., 2010, s. 7-11Konferensbidrag (Refereegranskat)
    Abstract [en]

    It is possible to have traceability in the mining industry, by parameters and signatures like particle mineralogy, mineral association, texture and mineral liberation. The study is on an apatite-iron ore deposit at Malmberget, Sweden, and characterises an ore body both mineralogically and texturally in a quantitative manner by using analytical methods like optical microscopy, microprobe (EMPA) and an automatic SEM based system, Particle Texture Analysis (PTA). The mineralogy was evaluated by PTA and characterized by modal mineralogy, mineral liberation and mineral associations. Magnetite has a simple outline and straight grain boundaries and the gangue minerals have a finer particle size with a more complicated texture. The PTA analysis also shows that apatite is associated to magnetite as mixed particles, while smaller grains of magnetite are inclusions in feldspar. Result from particle texture analysis shows that there is a connection which link to the mine-to-mill context, and it may be used to create traceability. This link is not the associations of the main ore mineral magnetite, nor the modal mineralogy. Instead, it is the mineral associations of contaminating minerals (apatite and feldspar) that appear to be most promising since they survive from mine to mill. The modal mineralogy may be used to understand how contaminating minerals break into or out of particle size fraction during grinding.

  • 27.
    Sand, Anders
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Rosenkranz, Jan
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Lund, Cecilia
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Sandström, Åke
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Samuelsson, Caisa
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Mineralteknik och metallurgi.
    Education Related to Mineral Raw Materials in the European Union: D3.3 Final Report on Skill Shortages and Means of Addressing Them2015Rapport (Övrig (populärvetenskap, debatt, mm))
1 - 27 av 27
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf