Ändra sökning
Avgränsa sökresultatet
1 - 20 av 20
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Bortoluzzi, Marco
    et al.
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia.
    Castro, Jesús
    Departamento de Química Inorgánica, Universidade de Vigo, Facultade de Química, Edificio de Ciencias Experimentais.
    Enrichi, Francesco
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC) .
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Busato, Marta
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia.
    Huang, Weizhe
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia.
    Green-emitting manganese (II) complexes with phosphoramide and phenylphosphonic diamide ligands2018Ingår i: Inorganic Chemistry Communications, ISSN 1387-7003, E-ISSN 1879-0259, Vol. 92, s. 145-150Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Tetrahedral manganese(II) complexes having formulae [MnX2{O = PR(NMe2)2}2] (X = Br, I; R = NMe2, Ph) were isolated and characterized, and in the case of [MnBr2{O = PPh(NMe2)2}2] the structure was ascertained by means of single crystal X-ray diffraction. All the complexes showed intense green emission assigned to the Mn(II) 4T1(4G) → 6A1(6S) transition upon excitation with UV light, with photoluminescence lifetimes in the range 100–1000 μs. Bromo-complexes maintain their luminescence features once dispersed in polycaprolactone matrix.

  • 2.
    Bortoluzzi, Marco
    et al.
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Mestre, VE, Italy;Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), Bari, Italy.
    Castro, Jesús
    Departamento de Química Inorgánica, Universidade de Vigo, Facultade de Química, Edificio de Ciencias Experimentais, Galicia, Spain.
    Girotto, Matteo
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Mestre, VE, Italy.
    Enrichi, Francesco
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Mestre, VE, Italy.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Mestre, VE, Italy.
    Luminescent copper(I) coordination polymer with 1-methyl-1H-benzotriazole, iodide and acetonitrile as ligands2019Ingår i: Inorganic Chemistry Communications, ISSN 1387-7003, E-ISSN 1879-0259, Vol. 102, s. 141-146Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The Cu(I) coordination polymer [Cu33-I)3(μ-btzMe)(NCCH3)]n (btzMe = 1-methyl-1H-benzotriazole) was prepared and characterized by X-Ray diffraction. The compound showed strong green emission upon excitation with wavelengths below 475 nm, with lifetime of 47 μs. The emission was attributed to 3(X,M)LCT transition on the basis of experimental data and DFT calculations.

  • 3.
    Bortoluzzi, Marco
    et al.
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia.
    Reolon, Andrea
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia.
    Scrivanti, Alberto
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia.
    Enrichi, Francesco
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia; Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi.
    The conjugate base of malonaldehyde as antenna-ligand towards trivalent europium and terbium ions2018Ingår i: Chemické zvesti, ISSN 0366-6352, E-ISSN 1336-9075, Vol. 72, nr 4, s. 809-819Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Coordination compounds having formulae [M(MA)3]n and M(MA)(Me2Tp)2 (M = Y, Eu, Tb; MA = conjugate base of malonaldehyde; Me2Tp = tris(3,5-dimethyl-pyrazol-1-yl)borate) were synthesized and characterized. The photoluminescence features of the europium and terbium derivatives were investigated. By comparing the herein reported photoluminescence data with those relative to analogous nitro- and bromomalonaldehyde derivatives, it appears that the conjugate base of malonaldehyde is a more efficient antenna-ligand for the sensitization of Tb(III) luminescence. The experimental data were rationalized on the basis of DFT calculations. Tb(MA)(Me2Tp)2 was used as dopant for the preparation of luminescent plastic materials based on poly(methyl methacrylate).

  • 4.
    Cailotto, Simone
    et al.
    Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Venezia Mestre, Italy.
    Mazzaro, Raffaello
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Enrichi, Francesco
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Piazza del Viminale 1, 00184 Roma, Italy.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Selva, Maurizio
    Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Venezia Mestre, Italy.
    Cattaruzza, Elti
    Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Venezia Mestre, Italy.
    Cristofori, Davide
    Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Venezia Mestre, Italy;Centro di microscopia elettronica “G. Stevanato”, Via Torino 155b, 30172 Venezia-Mestre, Italy.
    Amadio, Emanuele
    Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Venezia Mestre, Italy.
    Perosa, Alvise
    Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Venezia Mestre, Italy.
    Design of Carbon Dots for Metal-free Photoredox Catalysis2018Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, nr 47, s. 40560-40567Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The photoreduction potential of a set of four different carbon dots (CDs) was investigated. The CDs were synthesized by using two different preparation methods—hydrothermal and pyrolytic—and two sets of reagents—neat citric acid and citric acid doped with diethylenetriamine. The hydrothermal syntheses yielded amorphous CDs, which were either nondoped (a-CDs) or nitrogen-doped (a-N-CDs), whereas the pyrolytic treatment afforded graphitic CDs, either non-doped (g-CDs) or nitrogen-doped (g-N-CDs). The morphology, structure, and optical properties of four different types of CDs revealed significant differences depending on the synthetic pathway. The photocatalytic activities of the CDs were investigated as such, that is, in the absence of any other redox mediators, on the model photoreduction reaction of methyl viologen. The observed photocatalytic reaction rates: a-N-CDs ≥ g-CDs > a-CDs ≥ g-N-CDs were correlated with the presence/absence of fluorophores, to the graphitic core, and to quenching interactions between the two. The results indicate that nitrogen doping reverses the photoredox reactivity between amorphous and graphitic CDs and that amorphous N-doped CDs are the most photoredox active, a yet unknown fact that demonstrates the tunable potential of CDs for ad hoc applications.

  • 5.
    Enrichi, Francesco
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Armellini, C.
    CNR-IFN, Istituto di Fotonica e Nanotecnologie, CSMFO Lab. & FBK-CMM.
    Battaglin, G.
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia.
    Belluomo, F.
    Meridionale Impianti SpA.
    Belmokhtar, S.
    Laboratoire des Technologies Innovantes, LTI, Département de Génie industriel ENSA – Tanger.
    Bouajaj, A.
    Laboratoire des Technologies Innovantes, LTI, Département de Génie industriel ENSA – Tanger.
    Cattaruzza, E.
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia.
    Ferrari, M.
    M. Ferrari . Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Piazza del Viminale .
    Gonella, F.
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia.
    Lukowiak, A.
    Institute of Low Temperature and Structure Research, PAS.
    Silver doping of silica-hafnia waveguides containing Tb3+/Yb3+ rare earths for downconversion in PV solar cells2016Ingår i: Optical materials (Amsterdam), ISSN 0925-3467, E-ISSN 1873-1252, Vol. 60, s. 264-269Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The aim of this paper is to study the possibility to obtain an efficient downconverting waveguide which combines the quantum cutting properties of Tb3+/Yb3+ codoped materials with the optical sensitizing effects provided by silver doping. The preparation of 70SiO(2)-30HfO(2) glass and glass-ceramic waveguides by sol-gel route, followed by Ag doping by immersion in molten salt bath is reported. The films were subsequently annealed in air to induce the migration and/or aggregation of the metal ions. Results of compositional and optical characterization are given, providing evidence for the successful introduction of Ag in the films, while the photoluminescence emission is strongly dependent on the annealing conditions. These films could find potential applications as downshifting layers to increase the efficiency of PV solar cells

  • 6.
    Enrichi, Francesco
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Armellini, Cristina
    CSMFO Lab., Istituto di Fotonica e Nanotecnologie CNR.
    Belmokhtar, Saloua
    Laboratoire des Technologies Innovantes, LTI, Université Abdelmalek Essâadi, Tanger.
    Bouajaj, Adel
    Laboratoire des Technologies Innovantes, LTI, Université Abdelmalek Essâadi, Tanger.
    Chiappini, Andrea
    CSMFO Lab., Istituto di Fotonica e Nanotecnologie CNR.
    Ferrari, M.
    Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Piazza del Viminale .
    Quandt, Alexander
    Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi.
    Righini, Giancarlo C.
    Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Zur, Lidia Z.
    Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi.
    Visible to NIR downconversion process in Tb3+-Yb3+ codoped silica-hafnia glass and glass-ceramic sol-gel waveguides for solar cells2018Ingår i: Journal of Luminescence, ISSN 0022-2313, E-ISSN 1872-7883, Vol. 193, s. 44-50Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The efficiency of photovoltaic solar cells is strongly related to the spectral absorption and photo-conversion properties of the cell's active material, which does not exploit the whole broadband solar spectrum. This mismatch between the spectrum of the solar light and the wavelength dependent cell's response can be partially overcome by using luminescent conversion layers in front or in the back of the solar cell. In this paper, the investigation of Tb3+-Yb3+ co-doped SiO2-HfO2 glass and glass-ceramic waveguides is presented. Due to a down-conversion process based on cooperative energy transfer between one Tb3+ ion and two Yb3+ ions, a blue photon at 488 nm can be divided in two NIR photons at 980 nm. Films with different molar concentrations of rare earths, up to a total amount of [Tb+Yb] = 15%, were prepared by a sol-gel route, using dip-coating deposition on SiO2 substrates. For all the films, the molar ratio [Yb]/[Tb] was taken equal to 4. The comparison of the energy-transfer efficiency between Tb3+ and Yb3+ ions in the glass and in the glass-ceramic materials demonstrated the higher performance of the glass-ceramic, with a maximum quantum transfer efficiency of 179% for the highest rare earth doping concentration. Moreover, experimental results and comparison with proper rate equations modelling showed a linear dependence of the photoluminescence emission intensity for the Yb3+ ions 2F5/22F7/2 transition at 980 nm on the excitation power, indicating a direct transfer process from Tb3+ to Yb3+ ions. The reported waveguides could find applications not only as downconverting filters in transmission but also as efficient solar concentrators in the near-IR spectral region

  • 7.
    Enrichi, Francesco
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma.
    Belmokhtar, Saloua
    Laboratoire des Technologies Innovantes, LTI, Université Abdelmalek Essâadi, Tanger.
    Benedetti, Alvise
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Mestre, Venezia.
    Bouajaj, Adel
    Laboratoire des Technologies Innovantes, LTI, Université Abdelmalek Essâadi, Tanger.
    Cattaruzza, E.
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia.
    Coccetti, F.
    Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma.
    Colusso, Elena
    Dipartimento di Ingegneria Industriale (DII), Università degli Studi di Padova.
    Ferrari, M.
    Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma.
    Ghamgosar, Pedram
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Gonella, Francesco
    Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma.
    Karlsson, Maths
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology.
    Martucci, Alessandro
    Dipartimento di Ingegneria Industriale (DII), Università degli Studi di Padova.
    Ottini, Riccardo
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Mestre, Venezia.
    Riello, Pietro
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Mestre, Venezia.
    Righini, Giancarlo C.
    Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma.
    Trave, Enrico
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Mestre, Venezia.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    You, Shujie
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Zur, Lidia Z.
    Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma.
    Ag nanoaggregates as efficient broadband sensitizers for Tb3+ ions in silica-zirconia ion-exchanged sol-gel glasses and glass-ceramics2018Ingår i: Optical materials (Amsterdam), ISSN 0925-3467, E-ISSN 1873-1252, Vol. 84, s. 668-674Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this paper we report the study of down-shifting silica-zirconia glass and glass-ceramic films doped by Tb3+ ions and Ag nanoaggregates, which combine the typical spectral properties of the rare-earth-ions with the broadband sensitizing effect of the metal nanostructures. Na-Tb co-doped silica-zirconia samples were obtained by a modified sol-gel route. Dip-coating deposition followed by annealing for solvent evaporation and matrix densification were repeated several times, obtaining a homogeneous crack-free film. A final treatment at 700 °C or 1000 °C was performed to control the nanoscale structural properties of the samples, resulting respectively in a glass (G) or a glass-ceramic (GC), where tetragonal zirconia nanocrystals are surrounded by an amorphous silica matrix. Ag introduction was then achieved by ion-exchange in a molten salt bath, followed by annealing in air to control the migration and aggregation of the metal ions. The comparison of the structural, compositional and optical properties are presented for G and GC samples, providing evidence of highly efficient photoluminescence enhancement in both systems, slightly better in G than in GC samples, with a remarkable increase of the green Tb3+ PL emission at 330 nm excitation: 12 times for G and 8 times for GC samples. Furthermore, after Ag-exchange, the shape of Tb3+ excitation resembles the one of Ag ions/nanoaggregates, with a broad significant absorption in the whole UV-blue spectral region. This broadband enhanced downshifting could find potential applications in lighting devices and in PV solar cells.

  • 8.
    Enrichi, Francesco
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Roma, Italy. Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Venezia, Italy.
    Cattaruzza, Elti
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Venezia, Italy.
    Ferrari, Maurizio
    Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Roma, Italy. Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche (IFN-CNR), Laboratorio CSMFO and Fondazione Bruno Kessler (FBK) Photonics Unit, Trento, Italy.
    Gonella, Francesco
    Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Roma, Italy. Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Venezia, Italy.
    Ottini, Riccardo
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Venezia, Italy.
    Riello, Pietro
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Venezia, Italy.
    Righini, Giancarlo C.
    Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Roma, Italy. Istituto di Fisica Applicata Nello Carrara del Consiglio Nazionale delle Ricerche (IFAC-CNR), Firenze, Italy.
    Enrico, Trave
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Venezia, Italy.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Zur, Lidia
    Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Roma, Italy. Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche (IFN-CNR), Laboratorio CSMFO and Fondazione Bruno Kessler (FBK) Photonics Unit, Trento, Italy.
    Ag-Sensitized Yb3+ Emission in Glass-Ceramics2018Ingår i: Micromachines, ISSN 2072-666X, E-ISSN 2072-666X, Vol. 9, nr 8, artikel-id 380Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Rare earth doped materials play a very important role in the development of many photonic devices, such as optical amplifiers and lasers, frequency converters, solar concentrators, up to quantum information storage devices. Among the rare earth ions, ytterbium is certainly one of the most frequently investigated and employed. The absorption and emission properties of Yb3+ ions are related to transitions between the two energy levels 2F7/2 (ground state) and 2F5/2 (excited state), involving photon energies around 1.26 eV (980 nm). Therefore, Yb3+ cannot directly absorb UV or visible light, and it is often used in combination with other rare earth ions like Pr3+, Tm3+, and Tb3+, which act as energy transfer centres. Nevertheless, even in those co-doped materials, the absorption bandwidth can be limited, and the cross section is small. In this paper, we report a broadband and efficient energy transfer process between Ag dimers/multimers and Yb3+ ions, which results in a strong PL emission around 980 nm under UV light excitation. Silica-zirconia (70% SiO2-30% ZrO2) glass-ceramic films doped by 4 mol.% Yb3+ ions and an additional 5 mol.% of Na2O were prepared by sol-gel synthesis followed by a thermal annealing at 1000 °C. Ag introduction was then obtained by ion-exchange in a molten salt bath and the samples were subsequently annealed in air at 430 °C to induce the migration and aggregation of the metal. The structural, compositional, and optical properties were investigated, providing evidence for efficient broadband sensitization of the rare earth ions by energy transfer from Ag dimers/multimers, which could have important applications in different fields, such as PV solar cells and light-emitting near-infrared (NIR) devices.

  • 9.
    Enrichi, Francesco
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Quandt, Alexander
    School of Physics and Materials for Energy Research Group, University of the Witwatersrand, Johannesburg.
    Righini, Giancarlo C.
    Historical Museum of Physics and Study & Research Centre “Enrico Fermi”.
    Plasmonic enhanced solar cells: Summary of possible strategies and recent results2018Ingår i: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 82, nr 3, s. 2433-2439Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Plasmonic structures for light manipulation at sub-wavelength scale have received great interest in the field of photovoltaic (PV) solar cells for their potential to significantly enhance the cell's efficiency.

    The performance of any solar cell is determined by the capability to absorb incoming light and produce electric charges, which, in turn, has a number of limiting factors. One is related to the ever-reducing size and acceptance angle of the active region. Another is the limited spectral sensitivity of the active material, which cannot make use of significant parts of the solar spectrum.

    Correspondingly, the energy harvesting may be improved in two ways, namely by adopting light trapping schemes and by exploiting spectral modification processes to shift frequencies of the solar spectrum, which are initially not absorbed, into the region of maximum absorption of the cell.

    Plasmonic nanoparticles (NPs) can give a significant boost to both these aspects, by scattering and concentrating the electromagnetic field into the active region of the device, and by doing that within specific spectral regions, which can be properly tuned by optimizing the size, shape, distribution of the plasmonic NPs, and by choosing the right surrounding medium.

    During the last ten years, many papers have been published on very specific issues, but also on general properties of plasmonics applied to solar cells, with a strong increase between 2006 and 2012, followed by a period of significant, but stable, literature productivity. Given these premises, an organized and schematic summary of the main strategies and of the recent results on the field is given in this review, where different plasmonic approaches are compared and discussed, also by recalling specific examples from the literature and providing a few key conclusions to understand the main aspects and the future perspectives of the field.

  • 10.
    Manzetti, Sergio
    et al.
    Fjordforsk A/S, NanoFactory, Midtun, Vangsnes.
    Enrichi, Francesco
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    State-of-the-art developments in metal and carbon-based semiconducting nanomaterials: applications and functions in spintronics, nanophotonics, and nanomagnetics2017Ingår i: Advances in Manufacturing, ISSN 2095-3127, Vol. 5, nr 2, s. 105-119Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nanomaterials composed of metals and metal alloys are the most valuable components in emerging micro- and nano-electronic devices and innovations to date. The composition of these nanomaterials, their quantum chemical and physical properties, and their production methods are in critical need of summarization, so that a complete state of the art of the present and future of nanotechnologies can be presented. In this review, we report on the most recent activities and results in the fields of spintronics, nanophotonics, and nanomagnetics, with particular emphasis on metallic nanoparticles in alloys and pure metals, as well as in organic combinations and in relation to carbon-based nanostructures. This review shows that the combinatory synthesis of alloys with rare metals, such as scandium, yttrium, and rare earths imparts valuable qualities to high-magnetic-field compounds, and provides unique properties with emphasis on nanoelectronic and computational components. In this review, we also shed light on the methods of synthesis and the background of spintronic, nanomagnetic, and nanophotonic materials, with applications in optics, diagnostics, nanoelectronics, and computational nanotechnology. The review is important for the industrial development of novel materials, and for summarizing both fabrication and manufacturing methods, as well as principles and functions of metallic nanoparticles.

  • 11.
    Marin, Riccardo
    et al.
    Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Venezia-Mestre, Italy. Institut National de la Recherche Scientifique, Centre Énergie, Matériaux, Télécommunications (INRS−EMT), Université du Québec, Varennes, Québec, Canada.
    Vivian, Alvise
    Unit of Nanomaterials Chemistry, University of Namur, Department of Chemistry, Namur, Belgium.
    Skripka, Artiom
    Institut National de la Recherche Scientifique, Centre Énergie, Matériaux, Télécommunications (INRS−EMT), Université du Québec, Varennes, Québec, Canada.
    Migliori, Andrea
    CNR-IMM Sezione di Bologna, Bologna, Italy.
    Morandi, Vittorio
    CNR-IMM Sezione di Bologna, Bologna, Italy.
    Enrichi, Francesco
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Venezia-Mestre, Italy.
    Vetrone, Fiorenzo
    Institut National de la Recherche Scientifique, Centre Énergie, Matériaux, Télécommunications (INRS−EMT), Université du Québec, Varennes, Québec J3X 1S2, Canada. Centre for Self-Assembled Chemical Structures, McGill University, Montréal, Québec, Canada.
    Ceroni, Paola
    Department of Chemistry, Giacomo Ciamician, University of Bologna, Bologna, Italy.
    Aprile, Carmela
    Unit of Nanomaterials Chemistry, University of Namur, Department of Chemistry, Namur, Belgium.
    Canton, Patrizia
    Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Venezia-Mestre, Italy.
    Mercaptosilane-Passivated CuInS2 Quantum Dots for Luminescence Thermometry and Luminescent Labels2019Ingår i: ACS Applied Nano Materials, ISSN 2574-0970, Vol. 2, nr 4, s. 2426-2436Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Bright and nontoxic quantum dots (QDs) are highly desirable in a variety of applications, from solid-state devices to luminescent probes in assays. However, the processability of these species is often curbed by their surface chemistry, which limits their dispersibility in selected solvents. This renders a surface modification step often mandatory to make the QDs compatible with the solvent of interest. Here, we present a new synthetic approach to produce CuInS2 QDs compatible with organic polar solvents and readily usable for the preparation of composite materials. 3-Mercaptopropyl trimethoxysilane (MPTS) was used simultaneously as solvent, sulfur source, and capping agent for the QD synthesis. The synthesized QDs possessed a maximum photoluminescence quantum yield around 6%, reaching approximately 55% after growing a ZnS shell. The partial condensation of MPTS molecules on the surface of QDs was probed by solid-state nuclear magnetic resonance, whose results were used to interpret the interaction of the QDs with different solvents. To prove the versatility of the developed QDs, imparted by the thiolated silane molecules, we prepared via straightforward procedures two nanocomposites of practical interest: (i) silica nanoparticles decorated with QDs and (ii) an inexpensive polymeric film with embedded QDs. We further demonstrate the potential of this composite film as a luminescence thermometer operational over a broad temperature interval, with relative thermal sensitivity above 1% K–1 in the range of biological interest.

  • 12.
    Moretti, Elisa
    et al.
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, INSTM Venice Research Unit.
    Pizzol, Giorgia
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, INSTM Venice Research Unit.
    Fantin, Marina
    Nanofab-Veneto Nanotech, Marghera (Venice).
    Enrichi, Francesco
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Scopece, Paolo
    Nanofab-Veneto Nanotech, Marghera (Venice).
    Ocaña, Manuel
    Instituto de Ciencia de Materiales de Sevilla, CSIC, .
    Polizzi, Stefano
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, INSTM Venice Research Unit.
    Luminescent Eu-doped GdVO4 nanocrystals as optical markers for anti-counterfeiting purposes2017Ingår i: Chemical Papers, ISSN 0366-6352, Vol. 71, nr 1, s. 149-159Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Luminescent Eu:GdVO4 nanoparticles, with an average size of 60 nm, were deposited first on monocrystalline silicon wafers, then on four different natural stone materials, by a spray-coating technique and a silica layer was subsequently deposited by atmospheric pressure plasma jet to protect the luminescent layer and improve its adhesion to the substrate. The luminescent films were characterized by photoluminescence excitation and emission, while the surface morphology was examined by FEG-SEM microscopy and spectroscopic ellipsometry to determine the coating thickness. The optical appearance of the coatings was also evaluated by colorimetric measurements and the efficacy of the fixing action of the silica layer was estimated by PL measurements performed before and after a Scotch™ tape peeling test. The proposed methodology, easily applied on the surface of stone supports, has led to the realization of a luminescent film displaying good mechanical properties, transparent and undetectable in the presence of visible light, but easily activated by UV light source, indicating that the Eu:GdVO4 nanophosphors could be used as luminescent nanotags for a reliable anti-counterfeiting technology.

  • 13.
    Ouafi, M. El
    et al.
    LTI departement de Genie industriel ENSA Tanger, Universite Abdelmalek Essadi, Laboratoire des technologies innovantes, Tanger, Morocco.
    Belmokhtar, S.
    LTI departement de Genie industriel ENSA Tanger, Universite Abdelmalek Essadi, Laboratoire des technologies innovantes, Tanger, Morocco.
    Bouajai, A.
    LTI departement de Genie industriel ENSA Tanger, Universite Abdelmalek Essadi, Laboratoire des technologies innovantes, Tanger, Morocco.
    Britel, M.R
    LTI departement de Genie industriel ENSA Tanger, Universite Abdelmalek Essadi, Laboratoire des technologies innovantes, Tanger, Morocco.
    Enrichi, Francesco
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Museo Strorico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy;Dipartimento di Scienze Molecolari e Nanosistemi, Universita Ca' Foscari Venezia, Mestre-Venezia, Italy;CNR-IFN, Istituto di Fotonica e Nanotecnologie, CSMFO Lab. and FBK-CMM, Trento, Italy.
    Armellini, C.
    Istituto di Fotonica e Nanotecnologie, CSMFO Lab. & FBK-CMM, CNR-IFN, Povo, Trento, Italy.
    Chiappini, A.
    Istituto di Fotonica e Nanotecnologie, CSMFO Lab. & FBK-CMM, CNR-IFN, Povo, Trento, Italy.
    Meneghet, M.
    N/A.
    Ngoc, TranThi
    Istituto di Fotonica e Nanotecnologie, CSMFO Lab. & FBK-CMM, CNR-IFN, Povo, Trento, Italy.
    Zur, L.
    Museo strorico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma, Italy.
    Belluomo, F.
    Meridionale Impianti SpA, Caponago, Monza Brianza, Italy.
    Ferrari, M.
    Museo strorico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma, Italy.
    Rare Earth Ions Doped Down-conversion Materials for Third Generation Photovoltaic Solar Cells2018Ingår i: Proceedings of 2017 International Renewable and Sustainable Energy Conference, IRSEC 2017, IEEE, 2018, artikel-id 8477416Konferensbidrag (Refereegranskat)
    Abstract [en]

    In order to enhance the efficiency of photovoltaic solar cells and overcome their limitations, a matching between solar spectrum and semiconductor band gap is needed using luminescent materials. The following work present in this paper is mainly based on the adjustment of the solar spectrum to the cell bandgap by developing downconverting materials. Down conversion process is exploited to modify the solar spectrum due to a cooperative energy transfer between Tb 3+ and two Yb 3+ rare earth ions in silica-hafnia waveguides. Tb 3+ /Yb 3+ -codoped SiO 2 -HfO 2 planar waveguides have been prepared by sol gel route, using a dip-coating deposition on SiO 2 substrates. The waveguides were obtained with different concentrations and the total amount was [Tb 3+ +Yb 3+ ] = 5%, 7%, 9%, keeping constant the molar ratio [Yb]/[Tb]=4. The comparison between the glass and the glass-ceramic structures demonstrated that the energy transfer is more efficient in glass ceramic since it combines the good optical properties of glasses with the optimal spectroscopic properties of crystals activated by luminescent species. A maximum quantum transfer efficiency of 154.6% was found for the highest rare earth doping concentration.

  • 14.
    Riccò, R.
    et al.
    Institute of Physical and Theoretical Chemistry, Graz University of Technology.
    Nizzero, S.
    Department of Physics, University of Padova.
    Penna, E.
    Department of Biomedical Sciences, University of Padova.
    Meneghello, A.
    CRO National Cancer Institute, Aviano.
    Cretaio, E.
    Department of Molecular Sciences and Nanosystems, University of Venice Ca’ Foscari, Mestre.
    Enrichi, Francesco
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma.
    Ultra-small dye-doped silica nanoparticles via modified sol-gel technique2018Ingår i: Journal of nanoparticle research, ISSN 1388-0764, E-ISSN 1572-896X, Vol. 20, nr 5, artikel-id 117Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In modern biosensing and imaging, fluorescence-based methods constitute the most diffused approach to achieve optimal detection of analytes, both in solution and on the single-particle level. Despite the huge progresses made in recent decades in the development of plasmonic biosensors and label-free sensing techniques, fluorescent molecules remain the most commonly used contrast agents to date for commercial imaging and detection methods. However, they exhibit low stability, can be difficult to functionalise, and often result in a low signal-to-noise ratio. Thus, embedding fluorescent probes into robust and bio-compatible materials, such as silica nanoparticles, can substantially enhance the detection limit and dramatically increase the sensitivity. In this work, ultra-small fluorescent silica nanoparticles (NPs) for optical biosensing applications were doped with a fluorescent dye, using simple water-based sol-gel approaches based on the classical Stöber procedure. By systematically modulating reaction parameters, controllable size tuning of particle diameters as low as 10 nm was achieved. Particles morphology and optical response were evaluated showing a possible single-molecule behaviour, without employing microemulsion methods to achieve similar results.

  • 15.
    Righini, Giancarlo C.
    et al.
    Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi.
    Boulard, Brigitte
    IMMM - UMR CNRS .
    Coccetti, F.
    Historical Museum of Physics and Study and Research Centre 'Enrico Fermi', Roma.
    Enrichi, Francesco
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Ferrari, M.
    Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Piazza del Viminale .
    Lukowiak, A.
    Institute of Low Temperature and Structure Research, PAS.
    Pelli, Stefano
    Historical Museum of Physics and Study and Research Centre 'Enrico Fermi', Roma.
    Zur, Lidia Z.
    Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi.
    Quandt, Alexander
    Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi.
    Light management in solar cells: Recent advances2017Konferensbidrag (Refereegranskat)
    Abstract [en]

    Efficient light management is critical for the enhancement of the efficiency of solar cells. The performance of a solar cell is determined by the efficiency of the absorption process of light via excitation of electron-hole pairs and extraction of these generated charge carriers. The absorption, in turn, has a few limiting factors: one is related to the small size and acceptance angle of the active region, another to the reduced spectral sensitivity of the active material, which does not use a part of the solar radiation. Correspondingly, the energy harvesting may be improved in two ways: a) light trapping schemes may be adopted to make the cell 'thicker' by exploiting scattering and/or reflection effects. Plasmonic structures, constituted by patterned metal films or nanoparticles, demonstrated to be very effective for directing and enhancing the incident light beam. b) up- and down-conversion processes may be exploited to convert the frequencies of the solar spectrum from near-mid-IR and from blue-UV regions, respectively, to the region of maximum absorption of the cell. Thin glassy or glass-ceramic films doped with rare earth ions proved to be very suitable for this purpose. Here, an overview of recent results achieved in the use of plasmonic structures by different research groups will be reported, and different approaches will be compared.

  • 16.
    Scrivanti, Alberto
    et al.
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Mestre (VE), Italy .
    Bortoluzzi, Marco
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Mestre (VE), Italy .
    Morandini, Andrea
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Mestre (VE), Italy .
    Dolmella, Alessandro
    Dipartimento di Scienze del Farmaco Università di Padova, via Marzolo 5, 35131 Padova, Italy.
    Enrichi, Francesco
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Piazza del Viminale 1, 00184 Roma, Italy .
    Mazzaro, Raffaello
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Luminescent europium(III) complexes containing an electron rich 1,2,3-triazolyl-pyridyl ligand2018Ingår i: New Journal of Chemistry, ISSN 1144-0546, E-ISSN 1369-9261, Vol. 42, nr 13, s. 11064-11072Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An improved synthesis of the electron-rich N,N-chelating ligand, 2-(1-t-butyl-1H-1,2,3-triazol-4-yl)pyridine (L), has been developed by coupling t-butyl-azide with ethynylpyridine in the presence of a Cu(I) catalyst. L has been employed in the preparation of lanthanide coordination compounds having formulae [Ln(κ2-NO3)3L2] and [Eu(dbm)3L] (Ln = Eu, Tb; dbm = dibenzoylmethanate). The molecular structure of [Eu(dbm)3L] has been determined by X-ray diffraction studies. All the new complexes exhibit good photoluminescence properties and [Eu(dbm)3L] has been successfully used as the dopant for the preparation of luminescent plastic materials.

  • 17.
    Trave, Enrico
    et al.
    Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice.
    Back, Michele
    Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice.
    Cattaruzza, Elti
    Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice.
    Gonella, Francesco
    Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice.
    Enrichi, Francesco
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice.
    Cesca, Tiziana
    University of Padova, Physics and Astronomy Department, NanoStructures Group.
    Kalinic, Boris
    University of Padova, Physics and Astronomy Department, NanoStructures Group.
    Scian, Carlo
    University of Padova, Physics and Astronomy Department, NanoStructures Group.
    Bello, Valentina
    University of Padova, Physics and Astronomy Department, NanoStructures Group.
    Maurizio, Chiara
    University of Padova, Physics and Astronomy Department, NanoStructures Group.
    Giovanni, Mattei
    University of Padova, Physics and Astronomy Department, NanoStructures Group.
    Control of silver clustering for broadband Er3+ luminescence sensitization in Er and Ag co-implanted silica2018Ingår i: Journal of Luminescence, ISSN 0022-2313, E-ISSN 1872-7883, Vol. 197, s. 104-111Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this work, the optical properties of Er and Ag co-implanted silica slabs were investigated in order to shed light on the observed improvement of the rare-earth emission properties through a sensitization process activated by Ag implantation. A full ion implantation approach was adopted since it represents an effective way to create a thin doped layer, where luminescent Er ions can interact with Ag-related sensitizing species. The results evidenced that the sensitization process is effectively promoted in presence of Ag ultra-small structures, like few-atom aggregates or multimers, which can be already formed at the early stages of the metal clustering process. On the other hand, the precipitation of large, plasmonic clusters, occurring at high temperature post-Ag implantation annealing, produces a decrease of the fluorescence enhancement effect. Furthermore, it is suggested that the overall sensitization mechanism originates from an Ag-Er energy transfer that determines the possibility of a broadband photostimulation of the rare-earth ions, even by pumping in non-resonant excitation condition. Thanks to these features, the investigated Er and Ag co-implanted system can be considered for the realization of high-performing optical amplifiers in waveguide.

  • 18.
    You, Shujie
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Patelli, Alessandro
    Department of Physics and Astronomy, University of Padova, Padova, Italy.
    Ghamgosar, Pedram
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Cesca, Tiziana
    Department of Physics and Astronomy, University of Padova, Padova, Italy.
    Enrichi, Francesco
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venezia Mestre, Italy.
    Mattei, Giovanni
    Department of Physics and Astronomy, University of Padova, Padova, Italy.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Tuning ZnO nanorods photoluminescence through atmospheric plasma treatments2019Ingår i: APL Materials, ISSN 2166-532X, Vol. 7, nr 8, artikel-id 08111Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Room temperature atmospheric plasma treatments are widely used to activate and control chemical functionalities at surfaces. Here, we investigated the effect of atmospheric pressure plasma jet (APPJ) treatments in reducing atmosphere (Ar/1‰ H2 mixture) on the photoluminescence (PL) properties of single crystal ZnO nanorods (NRs) grown through hydrothermal synthesis on fluorine-doped tin oxide glass substrates. The results were compared with a standard annealing process in air at 300 °C. Steady-state photoluminescence showed strong suppression of the defect emission in ZnO NRs for both plasma and thermal treatments. On the other side, the APPJ process induced an increase in PL quantum efficiency (QE), while the annealing does not show any improvement. The QE in the plasma treated samples was mainly determined by the near band-edge emission, which increased 5–6 fold compared to the as-prepared samples. This behavior suggests that the quenching of the defect emission is related to the substitution of hydrogen probably in zinc vacancies (VZn), while the enhancement of UV emission is due to doping originated by interstitial hydrogen (Hi), which diffuses out during annealing. Our results demonstrate that atmospheric pressure plasma can induce a similar hydrogen doping as ordinarily used vacuum processes and highlight that the APPJ treatments are not limited to the surfaces but can lead to subsurface modifications. APPJ processes at room temperature and under ambient air conditions are stable, convenient, and efficient methods, compared to thermal treatments to improve the optical and surface properties of ZnO NRs, and remarkably increase the efficiency of UV emission.

  • 19.
    Zairov, R.R.
    et al.
    Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Russian Federation. Kazan (Volga region) Federal University, Russian Federation..
    Dovzhenko, A.P.
    Kazan (Volga region) Federal University, Russian Federation.
    Sapunova, A.S.
    Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Russian Federation.
    Voloshina, A.D.
    Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Russian Federation.
    Tatarinov, D.A.
    Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Russian Federation.
    Nizameev, I.R.
    Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Russian Federation. Kazan National Research Technical University named after A.N. Tupolev - KAI, Russian Federation..
    Gubaidullin, A.T.
    Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Russian Federation.
    Petrov, K.A.
    Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Russian Federation.
    Enrichi, Francesco
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venezia-Mestre, Italy.
    Mustafina, A.R.
    Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Russian Federation.
    Dual red-NIR luminescent Eu–Yb heterolanthanide nanoparticles as promising basis for cellular imaging and sensing2019Ingår i: Materials science & engineering. C, biomimetic materials, sensors and systems, ISSN 0928-4931, E-ISSN 1873-0191, Vol. 105, artikel-id 110057Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The present work introduces ternary Ln(III) (Ln = Eu, Yb, Lu) complexes with thenoyltriflouro1,3-diketonate (TTA−) and phosphine oxide derivative (PhO) as building blocks for core-shell nanoparticles with both Eu(III)- or Yb(III)-centered luminescence and the dual Eu(III)-Yb(III)-centered luminescence. Solvent-mediated self-assembly of the complexes is presented herein as the procedure for formation of Eu–Lu, Eu–Yb and Yb–Lu heterometallic or homometallic cores coated by hydrophilic polystyrenesulfonate-based shells. Steady state and time resolved Eu-centered luminescence in homolanthanide and heterolanthanide Eu–Lu and Eu–Yb cores is affected by Eu → Eu and Eu → Yb energy transfer due to a close proximity of the lanthanide blocks within the core of nanoparticles. The Eu → Yb energy transfer is highlighted to be the reason for the enhancement of the NIR Yb-centered luminescence. Efficient cellular uptake, low cytotoxicity towards normal and cancer cells, and sensing ability of Eu–Yb nanoparticles on lomefloxacin additives via both red and NIR channels make them promising as cellular imaging agents and sensors.

  • 20.
    Zur, Lidia Z.
    et al.
    Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi; CNR-IFN, Istituto di Fotonica e Nanotecnologie, CSMFO Lab. & FBK-CMM.
    Armellini, Cristina
    CNR-IFN, Istituto di Fotonica e Nanotecnologie, CSMFO Lab. & FBK-CMM.
    Belmokhtar, Saloua
    Laboratoire des Technologies Innovantes, LTI, Université Abdelmalek Essâadi, Tanger.
    Bouajaj, Adel
    Laboratoire des Technologies Innovantes, LTI, Université Abdelmalek Essâadi, Tanger.
    Cattaruzza, E.
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia.
    Chiappini, A.
    CNR-IFN, Istituto di Fotonica e Nanotecnologie, CSMFO Lab. & FBK-CMM.
    Coccetti, F.
    Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”.
    Ferrari, M.
    CNR-IFN, Istituto di Fotonica e Nanotecnologie, CSMFO Lab. & FBK-CMM; Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi” .
    Gonella, Francesco
    Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”; Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia.
    Righini, Giancarlo C.
    Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”; CNR-IFAC, Istituto di Fisica Applicata Nello Carrara .
    Trave, Enrico
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Enrichi, Francesco
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”.
    Comparison between glass and glass-ceramic silica-hafnia matrices on the down-conversion efficiency of Tb3+/Yb3+ rare earth ions2019Ingår i: Optical materials (Amsterdam), ISSN 0925-3467, E-ISSN 1873-1252, Vol. 87, s. 102-106Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this paper, the investigation of energy transfer efficiency in Tb3+-Yb3+ co-doped SiO2-HfO2 glass and glass-ceramic waveguides is presented. Cooperative energy transfer between these two ions allows to cut one UV or 488 nm photon in two 980 nm photons and could have important applications in improving the performance of photovoltaic solar cells. Thin films with different molar concentrations of rare earths, up to a total concentration of 21%, were prepared by a sol-gel route, using dip-coating deposition technique on SiO2 substrates. The ratio between Yb3+ and Tb3+ ions in all the prepared thin films is constant and equal to 4. The energy transfer between Tb3+ and Yb3+ ions in glass and glass-ceramic waveguides shows the higher efficiency for glass-ceramic with a maximum quantum transfer efficiency of about 190% for the sample containing 19% of rare earths.

1 - 20 av 20
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf