Endre søk
Begrens søket
1 - 19 of 19
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Amin, Sidra
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan.Department of Chemistry, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Pakistan.
    Tahira, Aneela
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Solangi, Amber
    National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan.
    Beni, Valerio
    RISE Acreo, Research Institute of Sweden, Norrköping, Sweden.
    Morante, J.R
    Catalonia Institute for Energy Research (IREC), Barcelona, Spain.
    Liu, Xianjie
    Department of Physics, Chemistry and Biology, Surface Physics and Chemistry, Linköping University, Faculty of Science & Engineering, Sweden.
    Falhman, Mats
    Department of Physics, Chemistry and Biology, Surface Physics and Chemistry, Linköping University, Faculty of Science & Engineering, Sweden.
    Mazzaro, Raffaello
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Ibupoto, Zafar
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Institute of Chemistry, University of Sindh, Jamshoro, Pakistan.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    A practical non-enzymatic urea sensor based on NiCo2O4 nanoneedles2019Inngår i: RSC Advances, E-ISSN 2046-2069, Vol. 9, nr 25, s. 14443-14451Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We propose a new facile electrochemical sensing platform for determination of urea, based on a glassy carbon electrode (GCE) modified with nickel cobalt oxide (NiCo2O4) nanoneedles. These nanoneedles are used for the first time for highly sensitive determination of urea with the lowest detection limit (1 μM) ever reported for the non-enzymatic approach. The nanoneedles were grown through a simple and low-temperature aqueous chemical method. We characterized the structural and morphological properties of the NiCo2O4 nanoneedles by TEM, SEM, XPS and XRD. The bimetallic nickel cobalt oxide exhibits nanoneedle morphology, which results from the self-assembly of nanoparticles. The NiCo2O4 nanoneedles are exclusively composed of Ni, Co, and O and exhibit a cubic crystalline phase. Cyclic voltammetry was used to study the enhanced electrochemical properties of a NiCo2O4 nanoneedle-modified GCE by overcoming the typical poor conductivity of bare NiO and Co3O4. The GCE-modified electrode is highly sensitive towards urea, with a linear response (R2 = 0.99) over the concentration range 0.01–5 mM and with a detection limit of 1.0 μM. The proposed non-enzymatic urea sensor is highly selective even in the presence of common interferents such as glucose, uric acid, and ascorbic acid. This new urea sensor has good viability for urea analysis in urine samples and can represent a significant advancement in the field, owing to the simple and cost-effective fabrication of electrodes, which can be used as a promising analytical tool for urea estimation.

  • 2.
    Amin, Sidra
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan. Department of Chemistry, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Pakistan.
    Tahira, Aneela
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Solangi, Amber
    National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan.
    Mazzaro, Raffaello
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Ibupoto, Zafar
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Department of Chemistry, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Pakistan.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    A sensitive enzyme-free lactic acid sensor based on NiO nanoparticles for practical applications2019Inngår i: Analytical Methods, ISSN 1759-9660, E-ISSN 1759-9679, Vol. 11, s. 3578-3583Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A facile and efficient electrochemical sensing platform has been successfully exploited for the first time for the determination of lactic acid using a nickel oxide (NiO) nanoparticle-modified glassy carbon electrode (GCE). Nickel oxide nanoparticles were prepared by a chemical growth method using different quantities of arginine as a soft template. The structural and morphological properties of NiO nanoparticles were characterized by Raman spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Cyclic voltammetry (CV) was used to study the electrochemical properties of various samples. The modified electrode is highly sensitive and presents a linear response over a wide range (0.005–5 mM) of lactic acid concentrations in 0.1 M NaOH. The detection limit for the sensor was found to be 5.7 μM, and it exhibits good stability. Furthermore, the sensor shows excellent selectivity in the presence of common interfering species. The lactic acid sensor showed good viability for lactic acid analysis in real samples (milk, yogurt and red wine) and demonstrated significant advancement in sensor technology for practical applications.

  • 3.
    Amin, Sidra
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan. Department of Chemistry, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Sindh Pakistan.
    Tahira, Aneela
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Solangi, Amber R.
    National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan.
    Mazzaro, Raffaello
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Institute for Microelectronics and Microsystems, National Research Council, Bologna, Italy.
    Ibupoto, Zafar Hussain
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Institute of Chemistry, University of Sindh, Jamshoro, Sindh Pakistan.
    Fatima, Almas
    National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy.
    Functional Nickel Oxide Nanostructures for Ethanol Oxidation in Alkaline Media2020Inngår i: Electroanalysis, ISSN 1040-0397, E-ISSN 1521-4109, Vol. 32, nr 5, s. 1052-1059Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Nickel oxide (NiO) nanostructures are employed in the basic medium for the oxidation of ethanol. A variety of NiO nanostructures are synthesized by wet chemical growth method, using different hydroxide (OH−) ion sources, particularly from ammonia, hexamethylenetetramine, urea and sodium hydroxide. The use of urea as (OH−) ion source results in flower‐like NiO structures composed by extremely thin nanowalls (thickness lower than 10 nm,), which demonstrated to be the most active for ethanol oxidation. All the samples exhibit NiO cubic phase, and no other impurity was detected. The cyclic voltammetry (CV) curves of NiO nanostructures were found linear over the concentration range 0.1–3.5 mM (R2=0.99) of ethanol, with the limit of detection estimated to be 0.013 mM for ethanol. The NiO nanostructures exhibit a selective signal towards ethanol oxidation in the presence of different members of alcohol family. The proposed NiO nanostructures showed a significant practicality for the reproducible and sensitive determination of ethanol from brandy, whisky, mixture of brandy and rum, and vodka samples. The nanomaterial was used as a surface modifying agent for the glassy carbon electrode and it showed a stable electro‐oxidation activity for the ethanol for 16 days. These findings indicate that the presented NiO nanomaterial can be applied in place of noble metals for ethanol sensing and other environmental applications (like fuel cells).

  • 4.
    Cailotto, Simone
    et al.
    Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Venezia Mestre, Italy.
    Mazzaro, Raffaello
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Enrichi, Francesco
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Piazza del Viminale 1, 00184 Roma, Italy.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Selva, Maurizio
    Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Venezia Mestre, Italy.
    Cattaruzza, Elti
    Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Venezia Mestre, Italy.
    Cristofori, Davide
    Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Venezia Mestre, Italy;Centro di microscopia elettronica “G. Stevanato”, Via Torino 155b, 30172 Venezia-Mestre, Italy.
    Amadio, Emanuele
    Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Venezia Mestre, Italy.
    Perosa, Alvise
    Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Venezia Mestre, Italy.
    Design of Carbon Dots for Metal-free Photoredox Catalysis2018Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, nr 47, s. 40560-40567Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The photoreduction potential of a set of four different carbon dots (CDs) was investigated. The CDs were synthesized by using two different preparation methods—hydrothermal and pyrolytic—and two sets of reagents—neat citric acid and citric acid doped with diethylenetriamine. The hydrothermal syntheses yielded amorphous CDs, which were either nondoped (a-CDs) or nitrogen-doped (a-N-CDs), whereas the pyrolytic treatment afforded graphitic CDs, either non-doped (g-CDs) or nitrogen-doped (g-N-CDs). The morphology, structure, and optical properties of four different types of CDs revealed significant differences depending on the synthetic pathway. The photocatalytic activities of the CDs were investigated as such, that is, in the absence of any other redox mediators, on the model photoreduction reaction of methyl viologen. The observed photocatalytic reaction rates: a-N-CDs ≥ g-CDs > a-CDs ≥ g-N-CDs were correlated with the presence/absence of fluorophores, to the graphitic core, and to quenching interactions between the two. The results indicate that nitrogen doping reverses the photoredox reactivity between amorphous and graphitic CDs and that amorphous N-doped CDs are the most photoredox active, a yet unknown fact that demonstrates the tunable potential of CDs for ad hoc applications.

  • 5.
    Di Maria, Francesca
    et al.
    Istituto per la Sintesi Organica e Fotoreattivita' (ISOF), Consiglio Nazionale delle Ricerche.
    Zangoli, Mattia G.
    Istituto per la Sintesi Organica e Fotoreattivita' (ISOF), Consiglio Nazionale delle Ricerche.
    Gazzano, Massimo
    Istituto per la Sintesi Organica e Fotoreattivita' (ISOF), Consiglio Nazionale delle Ricerche.
    Fabiano, Eduardo
    Institute for Microelectronics and Microsystems (CNR-IMM).
    Gentili, Denis
    Istituto per lo studio dei Materiali, Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche.
    Zanelli, Alberto
    Istituto per la Sintesi Organica e Fotoreattivita' (ISOF), Consiglio Nazionale delle Ricerche.
    Fermi, Andrea
    School of Chemistry, Cardiff University.
    Bergamini, Giacomo
    Department of Chemistry Giacomo Ciamician, University of Bologna.
    Bonifazi, Davide
    School of Chemistry, Cardiff University.
    Perinot, Andrea
    Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia.
    Caironi, Mario
    Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia.
    Mazzaro, Raffaello
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Istituto per la Microelettronica e i Microsistemi (IMM), Consiglio Nazionale delle Ricerche.
    Morandi, Vittorio
    Istituto per la Microelettronica e i Microsistemi (IMM), Consiglio Nazionale delle Ricerche.
    Gigli, Giuseppe
    Department of Mathematics and Physics, Ennio De Giorgi University of Salento, Lecce.
    Liscio, Andrea
    Institute for Microelectronics and Microsystems (CNR-IMM).
    Barbarella, Giovanna
    Istituto per la Sintesi Organica e Fotoreattivita' (ISOF), Consiglio Nazionale delle Ricerche.
    Controlling the Functional Properties of Oligothiophene Crystalline Nano/Microfibers via Tailoring of the Self-Assembling Molecular Precursors2018Inngår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 28, nr 32, artikkel-id 1801946Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Oligothiophenes are π-conjugated semiconducting and fluorescent molecules whose self-assembly properties are widely investigated for application in organic electronics, optoelectronics, biophotonics, and sensing. Here an approach to the preparation of crystalline oligothiophene nano/microfibers is reported based on the use of a “sulfur overrich” quaterthiophene building block, T4S4 , containing in its covalent network all the information needed to promote the directional, π–π stacking-driven, self-assembly of Y-T4S4-Y oligomers into fibers with hierarchical supramolecular arrangement from nano- to microscale. It is shown that when Y varies from unsubstituted thiophene to thiophene substituted with electron-withdrawing groups, a wide redistribution of the molecular electronic charge takes place without substantially affecting the aggregation modalities of the oligomer. In this way, a structurally comparable series of fibers is obtained having progressively varying optical properties, redox potentials, photoconductivity, and type of prevailing charge carriers (from p- to n-type). With the aid of density functional theory (DFT) calculations, combined with powder X-ray diffraction data, a model accounting for the growth of the fibers from molecular to nano- and microscale is proposed

  • 6.
    Fornasari, Luca
    et al.
    Dipartimento di Chimica “Giacomo Ciamician”, Università; di Bologna, Bologna, Italy.
    Mazzaro, Raffaello
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. CNR-IMM, Area della Ricerca di Bologna, Bologna, Italy.
    Boanini, Elisa
    Dipartimento di Chimica “Giacomo Ciamician”, Università; di Bologna, Bologna, Italy.
    d’Agostino, Simone
    Dipartimento di Chimica “Giacomo Ciamician”, Università; di Bologna, Bologna, Italy.
    Bergamini, Giacomo
    Dipartimento di Chimica “Giacomo Ciamician”, Università; di Bologna, Bologna, Italy.
    Grepioni, Fabrizia
    Dipartimento di Chimica “Giacomo Ciamician”, Università; di Bologna, Bologna, Italy.
    Braga, Dario
    Dipartimento di Chimica “Giacomo Ciamician”, Università; di Bologna, Bologna, Italy.
    Self-Assembly and Exfoliation of a Molecular Solid Based on Cooperative B-N and Hydrogen Bonds2018Inngår i: Crystal Growth & Design, ISSN 1528-7483, E-ISSN 1528-7505, Vol. 18, nr 12, s. 7259-7263Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Herein we report that 4-pyridinylboronic acid (1) in the solid state self-assembles into tetrameric macrocycles via B-N bond formation. The tetramers are linked via O-H···O bonds resulting in a material that can be exfoliated via sonication to give thinner sheets as we demonstrate via Fourier transform infrared spectroscopy, transmission electron microscopy, selected area electron diffraction, and atomic force microscopy experiments. For comparison, the structure of the related compound 4-(pyridin-4-yl) phenylboronic acid (2) is also discussed

  • 7.
    Ghamgosar, Pedram
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Rigoni, Federica
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Gilzad Kohan, Mojtaba
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    You, Shujie
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Morales, Edgar Abarca
    Luleå tekniska universitet.
    Mazzaro, Raffaello
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Morandi, Vittorio
    Institute for Microelectronics and Microsystems Section of Bologna , National Research Council , Bologna , Italy..
    Almqvist, Nils
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Concina, Isabella
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Self-Powered Photodetectors Based on Core-Shell ZnO-Co3O4 Nanowire Heterojunctions2019Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, nr 26, s. 23454-23462Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Self-powered photodetectors operating in the UV–visible–NIR window made of environmentally friendly, earth abundant, and cheap materials are appealing systems to exploit natural solar radiation without external power sources. In this study, we propose a new p–n junction nanostructure, based on a ZnO–Co3O4 core–shell nanowire (NW) system, with a suitable electronic band structure and improved light absorption, charge transport, and charge collection, to build an efficient UV–visible–NIR p–n heterojunction photodetector. Ultrathin Co3O4 films (in the range 1–15 nm) were sputter-deposited on hydrothermally grown ZnO NW arrays. The effect of a thin layer of the Al2O3 buffer layer between ZnO and Co3O4 was investigated, which may inhibit charge recombination, boosting device performance. The photoresponse of the ZnO–Al2O3–Co3O4 system at zero bias is 6 times higher compared to that of ZnO–Co3O4. The responsivity (R) and specific detectivity (D*) of the best device were 21.80 mA W–1and 4.12 × 1012 Jones, respectively. These results suggest a novel p–n junction structure to develop all-oxide UV–vis photodetectors based on stable, nontoxic, low-cost materials.

  • 8.
    Gilzad Kohan, Mojtaba
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Mazzaro, Raffaello
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. CNR-IMM, Area della Ricerca di Bologna, Bologna, Italy.
    Morandi, Vittorio
    CNR-IMM, Area della Ricerca di Bologna, Bologna, Italy.
    You, Shujie
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Concina, Isabella
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Plasma assisted vapor solid deposition of Co3O4 tapered nanorods for energy applications2019Inngår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 7, nr 46, s. 26302-26310Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Self-standing, 1-dimensional (1D) structures of p-type metal oxide (MOx) have been the focus of considerable attention, due to their unique properties in energy storage and solar light conversion. However, the practical performance of p-type MOx is intrinsically limited by their interfacial defects and strong charge recombination losses. Single crystalline assembly can significantly reduce recombination at interface and grain boundaries. Here, we present a one-step route based on plasma assisted physical vapor deposition (PVD), for the rational and scalable synthesis of single crystalline 1D vertically aligned Co3O4 tapered nanorods (NRs). The effect of PVD parameters (deposition pressure, temperature and duration) in tuning the morphology, composition and crystalline structure of resultant NRs is investigated. Crystallographic data obtained from X-ray diffraction and high-resolution transmission electron microscopy (TEM) indicated the single crystalline nature of NRs with [111] facet preferred orientation. The NRs present two optical band gaps at about 1.48 eV and 2.1 eV. Current–voltage (I–V) characteristic of the Co3O4 NRs electrodes, 400 nm long, present two times higher current density at −1 V forward bias, compared to the benchmarking thin film counterpart. These array structures exhibit good electrochemical performance in lithium-ion adsorption–desorption processes. Among all, the longest Co3O4 NRs electrodes delivers a 1438.4 F g−1 at current density of 0.5 mA cm−2 and presents 98% capacitance retention after 200 charge–discharge cycles. The very low values of charge transfer resistance (Rct = 5.2 Ω for 400 nm long NRs) of the NRs testifies their high conductivity. Plasma assisted PVD is demonstrated as a facile technique for synthesizing high quality 1D structures of Co3O4, which can be of interest for further development of different desirable 1D systems based on transition MOx.

  • 9.
    Khrizanforov, Mikhail N
    et al.
    Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Russian Federation.
    Fedorenko, Svetlana V
    Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Russian Federation.
    Mustafina, Asiya R
    Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Russian Federation.
    Kholin, Kirill V
    Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Russian Federation.
    Nizameev, Irek R
    Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Russian Federation.
    Strekalova, Sofia O
    Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Russian Federation.
    Grinenko, Valeriya V
    Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Russian Federation.
    Gryaznova, Tatiana V
    Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Russian Federation.
    Zairov, Rustem R
    Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Russian Federation.
    Mazzaro, Raffaello
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. CNR-IMM, Bologna Section, Bologna, Italy.
    Morandi, Vittorio
    CNR-IMM, Bologna Section, Bologna, Italy.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Budnikova, Yulia H
    Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Russian Federation.
    Silica-supported silver nanoparticles as an efficient catalyst for aromatic C-H alkylation and fluoroalkylation2018Inngår i: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 47, nr 29, s. 9608-9616Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The efficient catalysis of oxidative alkylation and fluoroalkylation of aromatic C-H bonds is of paramount importance in the pharmaceutical and agrochemical industries, and requires the development of convenient Ag0-based nano-architectures with high catalytic activity and recyclability. We prepared Ag-doped silica nanoparticles (Ag0/+@SiO2) with a specific nano-architecture, where ultra-small sized silver cores are immersed in silica spheres, 40 nm in size. The nano-architecture provides an efficient electrochemical oxidation of Ag+@SiO2 without any external oxidant. In turn, Ag+@SiO2 5 mol% results in 100% conversion of arenes into their alkylated and fluoroalkylated derivatives in a single step at room temperature under nanoheterogeneous electrochemical conditions. Negligible oxidative leaching of silver from Ag0/+@SiO2 is recorded during the catalytic coupling of arenes with acetic, difluoroacetic and trifluoroacetic acids, which enables the good recyclability of the catalytic function of the Ag0/+@SiO2 nanostructure. The catalyst can be easily separated from the reaction mixture and reused a minimum of five times upon electrochemical regeneration. The use of the developed Ag0@SiO2 nano-architecture as a heterogeneous catalyst facilitates aromatic C-H bond substitution by alkyl and fluoroalkyl groups, which are privileged structural motifs in pharmaceuticals and agrochemicals.

  • 10.
    Liu, Guiju
    et al.
    College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, PR China. State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, PR China.
    Mazzaro, Raffaello
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. CNR-IMM, Via Piero Gobetti 101, 40129, Bologna, Italy.
    Sun, Changchun
    State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, PR China. College of Textiles & Clothing, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, PR China.
    Zhang, Yuanming
    State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, PR China. College of Textiles & Clothing, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, PR China.
    Wang, Yiqian
    College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, PR China. State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, PR China.
    Zhao, Haiguang
    College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, PR China. State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, PR China.
    Han, Guangting
    State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, PR China. College of Textiles & Clothing, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, PR China.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172, Mestre Venezia, Italy.
    Role of refractive index in highly efficient laminated luminescent solar concentrators2020Inngår i: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 70, artikkel-id 104470Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    As a large-area solar radiation collector, luminescent solar concentrators (LSCs) can be used as power generation units in semitransparent solar windows, modernized agricultural greenhouses and building facades. However, the external optical efficiency and long-term stability of the LSCs limit their practical applications due to the sensitivity of the emitters to the light and environmental conditions. Here, we used the concept of “laminated glass” to prepare LSCs, which consist of two waveguide layers and the quantum dots (QDs)/polymer interlayer, and we tune the refractive index of the different parts of the system to improve the external optical efficiency and stability of the LSCs, simultaneously. The waveguide layer can be glass, quartz, polymethyl methacrylate (PMMA) and other transparent materials. The CdSe/CdS core/shell QDs were used as fluorophores to prepare the interlayer of the LSCs. The external optical efficiency of the laminated LSCs is associated with the refractive index of the three layers: the closer the refractive index, the higher the ηopt. The highest external optical efficiency of 3.4% has been achieved for the laminated PMMA/QDs-polymer/PMMA LSCs, which improved ~92% compared to the single-layered CdSe/CdS based LSCs. To the best of our knowledge, this is the highest efficiency for the LSCs based on CdSe/CdS QDs. These results pave the way to realize high efficiency laminated windows as power generation units by suitably tuning the structure of the LSC, and provide the theoretical guidance for the LSCs utilized in building integrated photovoltaics.

  • 11.
    Liu, Guiju
    et al.
    Qingdao University, Qingdao, PR China.
    Mazzaro, Raffaello
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Wang, Yiqian
    Qingdao University, Qingdao, PR China.
    Zhao, Haiguang
    Qingdao University, Qingdao, PR China.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Ca’ Foscari University of Venice, Venezia Mestre, Italy.
    High efficiency sandwich structure luminescent solar concentrators based on colloidal quantum dots2019Inngår i: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 60, s. 119-126Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Luminescent solar concentrators (LSCs) have received significant attention because of their low cost, large-area and high efficiency sunlight energy harvesting. Colloidal core/shell quantum dots (QDs) are promising candidates as absorbers/emitters in LSCs. However, due to the limitation of QDs properties and device architectures, LSCs fabricated using QDs still face the challenges of low optical efficiency and limited long-term stability for the large-area LSCs. In this work, we synthesized CdSe/CdS QDs, and found that higher CdS shell growth temperature results in improved uniformity in structure and morphology and more suitable optical properties. Based on the CdSe/CdS QDs, a large-area (∼100 cm 2 ) sandwich structure luminescent solar concentrator (LSC) was fabricated. By laminating the QDs layer between two sheets of optical clear glass, the reabsorption losses of the device can be reduced due to the decrease of photon escape. The as-fabricated sandwich structure device exhibits an external optical efficiency of ∼ 2.95% under natural sunlight illumination, which represents a 78% enhancement in efficiency over the single layer film LSCs based on CdSe/CdS QDs. More importantly, the sandwich structure can protect the QDs interlayer from the impact of the ambient environment (e.g. oxygen, moisture and alkalinity) and enhance the long-term stability of LSCs. Our work shows that the use of suitably tuned core-shell QDs and the sandwich structure in LSC architecture can dramatically enhance the external optical efficiency of LSC devices based on CdSe/CdS QDs.

  • 12.
    Mazzaro, Raffaello
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Bibi, Sara Boscolo
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Natali, Micro
    Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy.
    Bergamini, Giacomo
    Chemistry Department “Giacomo Ciamician”, University of Bologna, Bologna, Italy.
    Morandi, Vittorio
    CNR-IMM Bologna, Bologna, Italy.
    Ceroni, Paola
    Chemistry Department “Giacomo Ciamician”, University of Bologna, Bologna, Italy.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venezia Mestre, Italy.
    Hematite nanostructures: An old material for a new story. Simultaneous photoelectrochemical oxidation of benzylamine and hydrogen production through Ti doping2019Inngår i: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 61, s. 36-46Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Overall water splitting represents one of the most promising approaches toward solar energy conversion and storage, which is, however, severely challenged by the four-electron/four-proton nature of the oxygen evolution reaction (OER). One option to overcome this issue is to replace OER with a more useful reaction, for simultaneous production of both hydrogen and chemicals of interest. For the purpose, in this paper a cheap, hydrothermally prepared Ti-doped nanostructured hematite photoanode was employed for the first time as highly stable, heterogeneous catalyst for the low bias, efficient and highly selective photoinduced oxidation of benzylamine to N-benzylidenebenzylamine, and for the simultaneous production of hydrogen in a double solvent/environment cell. A preliminary estimate indicates the possibility to obtain a ∼150 μmol h−1 H2 production, with the contemporary production of stoichiometric benzylidene N-benzylamine in a 5 × 5 cm2 area electrode. This study contributes to overcome the 40-year lasting issues limiting the use of hematite in industrial photoelectrochemical sunlight conversion and storage, due to poor performance of hematite and lack of economic value of oxygen production, providing solid evidence for the simultaneous use of hematite in hydrogen production and alternative oxidation reactions of industrial importance.

  • 13.
    Mazzaro, Raffaello
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. CNR-IMM Bologna, Bologna, Italy. Chemistry Department Giacomo Ciamician, University of Bologna, Bologna, Italy.
    Gradone, Alessandro
    Chemistry Department Giacomo Ciamician, University of Bologna, Bologna, Italy.
    Angeloni, Sara
    Chemistry Department Giacomo Ciamician, University of Bologna, Bologna, Italy.
    Morselli, Giacomo
    Chemistry Department Giacomo Ciamician, University of Bologna, Bologna, Italy.
    Cozzi, Pier Giorgio
    Chemistry Department Giacomo Ciamician, University of Bologna, Bologna, Italy.
    Romano, Francesco
    Chemistry Department Giacomo Ciamician, University of Bologna, Bologna, Italy.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venezia Mestre, Italy.
    Ceroni, Paola
    Chemistry Department Giacomo Ciamician, University of Bologna, Bologna, Italy.
    Hybrid Silicon Nanocrystals for Color-Neutral and Transparent Luminescent Solar Concentrators2019Inngår i: ACS Photonics, E-ISSN 2330-4022, Vol. 6, nr 9, s. 2303-2311Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    One of the most detrimental loss mechanisms in Luminescent Solar Concentrators (LSCs) is reabsorption of emitted light from the luminophore. Silicon Nanocrystals (SiNCs) offer a solution due to the high apparent Stokes shift, but the poor absorption properties limit their performance as LSC luminophores. Coupling an organic dye to SiNCs represents a smart approach to obtain sensitization of SiNC luminescence by the organic dyes, thus, resulting in tunable and improved optical properties of LSCs. In particular, 9,10-diphenylanthracene was employed as a UV sensitizer for SiNCs in order to produce LSCs with an aesthetic appearance suitable to smart window application and optical efficiency as high as 4.25%. In addition, the role of the energy transfer process on LSC performance was elucidated by a thorough optical and photovoltaic characterization.

  • 14.
    Mazzaro, Raffaello
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    The Renaissance of Luminescent Solar Concentrators: the Role of Inorganic Nanomaterials2018Inngår i: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, Vol. 8, nr 33, artikkel-id 1801903Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    While luminescent solar concentrators (LSCs) have a simple architecture—a transparent matrix embedding a luminescent fluorophore coupled with solar cells at the lateral side of the LSC slab—multiple paths for possible light losses exist. These are inherently interconnected, and in the past, limited the interest in this device, due to the gap between the theoretical possibilities and experimental achievements. This gap was a result, primarily, of the optical features of the luminescent dyes, since conventional organic luminophores are affected by limited performance in LSC devices. The rise of a wide portfolio of optically active inorganic nanomaterials in the last decade provides an alternative to organic dyes and has lead to a renaissance in the role of LSCs among the unconventional solar energy conversion devices. This paper reviews the latest results in the development of LSCs based on different classes of nanomaterials, focusing on the specific features and critically analyzing the pros and cons of the proposed structures. Particular attention is devoted to the role of the luminescence properties, e.g., the Stokes shift and the photoluminescence quantum yield, with respect to the performance of the LSC device. Future challenges to the successful employment of these devices for building integrated photovoltaics are also discussed.

  • 15.
    Scrivanti, Alberto
    et al.
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Mestre (VE), Italy .
    Bortoluzzi, Marco
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Mestre (VE), Italy .
    Morandini, Andrea
    Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Mestre (VE), Italy .
    Dolmella, Alessandro
    Dipartimento di Scienze del Farmaco Università di Padova, via Marzolo 5, 35131 Padova, Italy.
    Enrichi, Francesco
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Piazza del Viminale 1, 00184 Roma, Italy .
    Mazzaro, Raffaello
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Luminescent europium(III) complexes containing an electron rich 1,2,3-triazolyl-pyridyl ligand2018Inngår i: New Journal of Chemistry, ISSN 1144-0546, E-ISSN 1369-9261, Vol. 42, nr 13, s. 11064-11072Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    An improved synthesis of the electron-rich N,N-chelating ligand, 2-(1-t-butyl-1H-1,2,3-triazol-4-yl)pyridine (L), has been developed by coupling t-butyl-azide with ethynylpyridine in the presence of a Cu(I) catalyst. L has been employed in the preparation of lanthanide coordination compounds having formulae [Ln(κ2-NO3)3L2] and [Eu(dbm)3L] (Ln = Eu, Tb; dbm = dibenzoylmethanate). The molecular structure of [Eu(dbm)3L] has been determined by X-ray diffraction studies. All the new complexes exhibit good photoluminescence properties and [Eu(dbm)3L] has been successfully used as the dopant for the preparation of luminescent plastic materials.

  • 16.
    Solomon, Getachew
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Gilzad Kohan, Mojtaba
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Mazzaro, Raffaello
    Istituto di Microelettronica e Microsistemi-CNR (CNR, IMM), Via Piero Gobetti 101, Bologna, 40129 Italy; Department of Physics and Astronomy, University of Bologna, Via Berti Pichat 6/2, Bologna, 40129 Italy.
    Jugovac, Matteo
    Elettra Sincrotrone Trieste, SS 14 Km 163,5, Trieste, 34149 Italy.
    Moras, Paolo
    Istituto di Struttura della Materia-CNR (ISM-CNR), SS 14, Km 163.5, Trieste, 34149 Italy.
    Morandi, Vittorio
    Istituto di Microelettronica e Microsistemi-CNR (CNR, IMM), Via Piero Gobetti 101, Bologna, 40129 Italy.
    Concina, Isabella
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, Venezia Mestre, Bologna, 30172 Italy.
    MoS2 Nanosheets Uniformly Anchored on NiMoO4 Nanorods, a Highly Active Hierarchical Nanostructure Catalyst for Oxygen Evolution Reaction and Pseudo-Capacitors2023Inngår i: Advanced sustainable systems, E-ISSN 2366-7486, Vol. 7, nr 2, artikkel-id 2200410Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Hierarchical nanostructures have attracted considerable research attention due to their applications in the catalysis field. Herein, we design a versatile hierarchical nanostructure composed of NiMoO4 nanorods surrounded by active MoS2 nanosheets on an interconnected nickel foam substrate. The as-prepared nanostructure exhibits excellent oxygen evolution reaction performance, producing a current density of 10 mA cm−2 at an overpotential of 90 mV, in comparison with 220 mV necessary to reach a similar current density for NiMoO4. This behavior originates from the structural/morphological properties of the MoS2 nanosheets, which present numerous surface-active sites and allow good contact with the electrolyte. Besides, the structures can effectively store charges, due to their unique branched network providing accessible active surface area, which facilitates intermediates adsorptions. Particularly, NiMoO4/MoS2 shows a charge capacity of 358 mAhg−1 at a current of 0.5 A g−1 (230 mAhg−1 for NiMoO4), thus suggesting promising applications for charge-storing devices.

    Fulltekst (pdf)
    fulltext
  • 17.
    Solomon, Getachew
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Mazzaro, Raffaello
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    You, Shujie
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Natile, Marta Maria
    CNR-Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), Department of Chemical Sciences, University of Padova, Padova , Italy.
    Morandi, Vittorio
    CNR-Institute of Microelectronics and Microsystem (IMM), Bologna, Italy.
    Concina, Isabella
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Ag2S/MoS2 Nanocomposites Anchored on Reduced Graphene Oxide: Fast Interfacial Charge Transfer for Hydrogen Evolution Reaction2019Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, nr 25, s. 22380-22389Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Hydrogen evolution reaction through electrolysis holds great potential as a clean, renewable, and sustainable energy source. Platinum-based catalysts are the most efficient to catalyze and convert water into molecular hydrogen; however, their large-scale application is prevented by scarcity and cost of Pt. In this work, we propose a new ternary composite of Ag2S, MoS2, and reduced graphene oxide (RGO) flakes via a one-pot synthesis. The RGO support assists the growth of two-dimensional MoS2 nanosheets partially covered by silver sulfides as revealed by high-resolution transmission electron microscopy. Compared with the bare MoS2 and MoS2/RGO, the Ag2S/MoS2 anchored on the RGO surface (the ternary system Ag2S/MoS2/RGO) demonstrated a high catalytic activity toward hydrogen evolution reaction (HER). Its superior electrochemical activity toward HER is evidenced by the positively shifted (−190 mV vs reversible hydrogen electrode (RHE)) overpotential at a current density of −10 mA/cm2 and a small Tafel slope (56 mV/dec) compared with a bare and binary system. The Ag2S/MoS2/RGO ternary catalyst at an overpotential of −200 mV demonstrated a turnover frequency equal to 0.38 s–1. Electrochemical impedance spectroscopy was applied to understand the charge-transfer resistance; the ternary sample shows a very small charge-transfer resistance (98 Ω) at −155 mV vs RHE. Such a large improvement can be attributed to the synergistic effect resulting from the enhanced active site density of both sulfides and to the improved electrical conductivity at the interfaces between MoS2 and Ag2S. This ternary catalyst opens up further optimization strategies to design a stable and cheap catalyst for hydrogen evolution reaction, which holds great promise for the development of a clean energy landscape.

  • 18.
    Tahira, Aneela
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Ibupoto, Zafar
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Dr. M.A Kazi Institute of Chemistry University of Sindh Jamshoro, Sindh, Pakistan.
    Mazzaro, Raffaello
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Istituto per la Microelettronica ed i Microsistemi, Consiglio Nazionale delle Ricerche (IMM-CNR), Bologna, Italy.
    You, Shujie
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Morandi, Vittorio
    Istituto per la Microelettronica ed i Microsistemi, Consiglio Nazionale delle Ricerche (IMM-CNR), Bologna, Italy.
    Natile, Marta Maria
    Università di Padova, Padova, Italy.
    Vagin, Mikhail
    Linköping University, Norrköping, Sweden.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Ca’ Foscari University Venice, Venice, Italy.
    Advanced Electrocatalysts for Hydrogen Evolution Reaction Based on Core–Shell MoS2/TiO2 Nanostructures in Acidic and Alkaline Media2019Inngår i: ACS Applied Energy Materials, E-ISSN 2574-0962, Vol. 2, nr 3, s. 2053-2062Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Hydrogen production as alternative energy source is still a challenge due to the lack of efficient and inexpensive catalysts, alternative to platinum. Thus, stable, earth abundant, and inexpensive catalysts are of prime need for hydrogen production via hydrogen evolution reaction (HER). Herein, we present an efficient and stable electrocatalyst composed of earth abundant TiO2 nanorods decorated with molybdenum disulfide thin nanosheets, a few nanometers thick. We grew rutile TiO2 nanorods via the hydrothermal method on conducting glass substrate, and then we nucleated the molybdenum disulfide nanosheets as the top layer. This composite possesses excellent hydrogen evolution activity in both acidic and alkaline media at considerably low overpotentials (350 mV and 700 mV in acidic and alkaline media, respectively) and small Tafel slopes (48 and 60 mV/dec in acidic and alkaline conditions, respectively), which are better than several transition metal dichalcogenides, such as pure molybdenum disulfide and cobalt diselenide. A good stability in acidic and alkaline media is reported here for the new MoS2/TiO2 electrocatalyst. These results demonstrate the potential of composite electrocatalysts for HER based on earth abundant, cost-effective, and environmentally friendly materials, which can also be of interest for a broader range of scalable applications in renewable energies, such as lithium sulfur batteries, solar cells, and fuel cells.

  • 19.
    Tahira, Aneela
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Institute of Chemistry, University of Sindh, Jamshoro, 76080, Sindh, Pakistan.
    Mazzaro, Raffaello
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. CNR-IMM, Via Piero Gobetti 101, Bologna, 40129, Italy.
    Rigoni, Federica
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Nafady, Ayman
    Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
    Shaikh, Shoyebmohamad F.
    Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
    Alothman, Asma A.
    Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
    Alshgari, Razan A.
    Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
    Ibupoto, Zafar Hussian
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Institute of Chemistry, University of Sindh, Jamshoro, 76080, Sindh, Pakistan.
    A simple and efficient visible light photodetector based on Co3O4/ZnO composite2021Inngår i: Optical and quantum electronics, ISSN 0306-8919, E-ISSN 1572-817X, Vol. 53, nr 9, artikkel-id 534Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Herein, we propose for the first time visible light photodetector based on n-type ZnO nanorods decorated with p-type Co3O4 nanowires. The heterojunction was fabricated on fluorine doped tin oxide (FTO) glass substrate by low temperature aqueous chemical growth method. ZnO exhibits nanorod morphology and cobalt oxide possesses nanowire shape with sharp tail. Energy dispersive spectroscopy confirmed the presence of Zn, O, and Co elements in the heterojunction. ZnO and Co3O4 have hexagonal and cubic phases, respectively, as confirmed by XRD. The dense and perpendicular ZnO nanorods are acting as a scattering layer for visible light, while Co3O4 nanowires act as a visible-light absorber. The all oxide p–n junction can operate as visible light photodetector. Furthermore, the heterojunction also shows a reproducible and fast response for the detection of visible light. Optimization of the device is needed (presence of buffer layers, tuning a thickness of the optical absorber) to improve its functionalities. 

1 - 19 of 19
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf