Endre søk
Begrens søket
1 - 9 of 9
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Alvi, Sajid Ali
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Ghamgosar, Pedram
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Rigoni, Federica
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Akhtar, Farid
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Adaptive nanolaminate coating by atomic layer deposition2019Inngår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 692, artikkel-id 137631Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Atomic layer deposition (ALD) was used to deposit ZnO/Al2O3/V2O5 nanolaminate coatings to demonstrate a coating system with temperature adaptive frictional behaviour. The nanolaminate coating exhibited excellent conformity and crack-free coating of thickness 110 nm over Inconel 718 substrate. The ALD trilayer coating showed a hardness and elastic modulus of 12 GPa and 193 GPa, respectively. High-temperature tribology of the nanolaminate trilayer was tested against steel ball in dry sliding condition at 25 °C (room temperature, RT), 200 °C, 300 °C, and 400 °C. It was found that the nanolaminate coating showed a low coefficient of friction (COF) and wear rate at RT and 300 °C. The trilayer coating was found intact and stable at all temperatures during the friction tests. The adaptability of nanolaminate coating with the temperature was verified by performing the cyclic friction test at 300 °C and RT. The low COF and wear rate had been attributed to the (100) and (002) basal plane sliding of ZnO top layer, and the interlayer sliding of weakly bonded planes parallel to (001) plane in V2O5 bottom layer. Furthermore, even after the removal of ZnO coating during the tribotest, the bottom V2O5 layer coating stabilized the COF and wear rate at RT and 300 °C.

  • 2.
    De Melo, C.
    et al.
    Université de Lorraine, CNRS, IJL, Nancy, France; Department of Materials Science and Engineering, Saarland University, Saarbrücken, Germany.
    Jullien, M.
    Université de Lorraine, CNRS, IJL, Nancy, France.
    Ghanbaja, J.
    Université de Lorraine, CNRS, IJL, Nancy, France.
    Montaigne, F.
    Université de Lorraine, CNRS, IJL, Nancy, France.
    Pierson, J.-F.
    Université de Lorraine, CNRS, IJL, Nancy, France.
    Soldera, F.
    Department of Materials Science and Engineering, Saarland University, Saarbrücken, Germany.
    Rigoni, Federica
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Almqvist, Nils
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Mücklich, F.
    Department of Materials Science and Engineering, Saarland University, Saarbrücken, Germany.
    Horwat, D.
    Université de Lorraine, CNRS, IJL, Nancy, France.
    Local Structure and Point-Defect-Dependent Area-Selective Atomic Layer Deposition Approach for Facile Synthesis of p-Cu2O/n-ZnO Segmented Nanojunctions2018Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, nr 43, s. 37671-37678Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Area-selective atomic layer deposition (AS-ALD) has attracted much attention in recent years due to the possibility of achieving accurate patterns in nanoscale features, which render this technique compatible with the continuous downscaling in nanoelectronic devices. The growth selectivity is achieved by starting from different materials and results (ideally) in localized growth of a single material. We propose here a new concept, more subtle and general, in which a property of the substrate is modulated to achieve localized growth of different materials. This concept is demonstrated by selective growth of high-quality metallic Cu and semiconducting Cu2O thin films, achieved by changing the type of majority point defects in the ZnO underneath film exposed to the reactive species using a patterned bilayer structure composed of highly conductive and highly resistive areas, as confirmed by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). The selective growth of these materials in a patterned ZnO/Al-doped ZnO substrate allows the fabrication of p-Cu2O/n-ZnO nanojunctions showing a nonlinear rectifying behavior typical of a p-n junction, as confirmed by conductive atomic force microscopy (C-AFM). This process expands the spectra of materials that can be grown in a selective manner by ALD and opens up the possibility of fabricating different architectures, taking advantage of the area-selective deposition. This offers a variety of opportunities in the field of transparent electronics, catalysis, and photovoltaics.

  • 3.
    de Melo, Claudia
    et al.
    Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; Department of Materials Science and Engineering, Saarland University, Saarbrücken, Germany.
    Jullien, Maud
    Université de Lorraine, CNRS, IJL, Nancy, France.
    Battie, Yann
    LCP-A2MC, Institut Jean Barriol, Université de Lorraine, Metz, France.
    En Naciri, Aotmane
    LCP-A2MC, Institut Jean Barriol, Université de Lorraine, Metz, France.
    Ghanbaja, Jaafar
    Université de Lorraine, CNRS, IJL, Nancy, France.
    Montaigne, François
    Université de Lorraine, CNRS, IJL, Nancy, France.
    Pierson, Jean-François
    Université de Lorraine, CNRS, IJL, Nancy, France.
    Rigoni, Federica
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Almqvist, Nils
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Migot, Sylvie
    Department of Materials Science and Engineering, Saarland University, D-66123 Saarbrücken, Germany.
    Mücklich, Frank
    Department of Materials Science and Engineering, Saarland University, Saarbrücken, Germany.
    Horwat, David
    Université de Lorraine, CNRS, IJL, Nancy, France.
    Tunable Localized Surface Plasmon Resonance and Broadband Visible Photoresponse of Cu Nanoparticles/ZnO Surfaces2018Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, nr 47, s. 40958-40965Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Plasmonic Cu nanoparticles (NP) were successfully deposited on ZnO substrates by atomic layer deposition (ALD) owing to the Volmer–Weber island growth mode. An evolution from Cu NP to continuous Cu films was observed with an increasing number of ALD cycles. Real and imaginary parts of the NP dielectric functions, determined by spectroscopic ellipsometry using an effective medium approach, evidence a localized surface plasmon resonance that can be tuned between the visible and near-infrared ranges by controlling the interparticle spacing and size of the NP. The resulting Cu NP/ZnO device shows an enhanced photoresponse under white light illumination with good responsivity values, fast response times, and stability under dark/light cycles. The significant photocurrent detected for this device is related to the hot-electron generation at the NP surface and injection into the conduction band of ZnO. The possibility of tuning the plasmon resonance together with the photoresponsivity of the device is promising in many applications related to photodetection, photonics, and photovoltaics.

  • 4.
    de Melo, Claudia
    et al.
    Universitéde Lorraine, CNRS, IJL, Nancy, France.
    Jullien, Maud
    Universitéde Lorraine, CNRS, IJL, Nancy, France.
    Battie, Yann
    LCP-A2MC, Institut Jean Barriol, Universitéde Lorraine, Metz, France.
    Naciri, Aotmane En
    LCP-A2MC, Institut Jean Barriol, Universitéde Lorraine, Metz, France.
    Ghanbaja, Jaafar
    Universitéde Lorraine, CNRS, IJL, Nancy, France.
    Montaigne, Francois
    Universitéde Lorraine, CNRS, IJL, Nancy, France.
    Pierson, Jean-Francois
    Universitéde Lorraine, CNRS, IJL, Nancy, France.
    Rigoni, Federica
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Almqvist, Nils
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Migot, Sylvie
    Department of Materials Science and Engineering, Saarland University, Saarbrücken, Germany.
    Mücklich, Frank
    Department of Materials Science and Engineering, Saarland University, Saarbrücken, Germany.
    Horwat, David
    Universitéde Lorraine, CNRS, IJL, Nancy, France.
    Semi-Transparent p‑Cu2O/n-ZnO Nanoscale-Film Heterojunctions for Photodetection and Photovoltaic Applications2019Inngår i: ACS Applied Nano Materials, ISSN 2574-0970, Vol. 2, nr 7, s. 4358-4366Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Transparent nanoscale-film heterojunctions based on Cu2O and ZnO were fabricated by atomic layer deposition and reactive magnetron sputtering. The constitutive layers exhibit high crystalline quality and a local epitaxial relation between Cu2O and ZnO was achieved with [110] Cu2O || [001] ZnO and [001] Cu2O || [010] ZnO as evidenced by high resolution transmission electron microscopy and. Cu2O films show very low resistivity and high mobility values of 9–150 Ω cm and 19 cm2/V s, respectively. The Cu2O/ZnO heterojunctions exhibit a nonlinear rectifying behavior characteristic of a p–n junction, self-powered photoresponse under 1 Sun illumination and an average transmittance of 73% in the visible region of the electromagnetic spectrum. These results are promising for all-oxide transparent electronics, photodetection and photovoltaic applications.

  • 5.
    Dobryden, Illia
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Division of Surface and Corrosion Science, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden; .
    Borgani, Riccardo
    Nanostructure Physics, KTH Royal Institute of Technology, Stockholm, Sweden.
    Rigoni, Federica
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venezia Mestre, Italy.
    Ghamgosar, Pedram
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Concina, Isabella
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Almqvist, Nils
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venezia Mestre, Italy.
    Nanoscale characterization of an all-oxide core-shell nanorod heterojunction using intermodulation atomic force microscopy (AFM) methods2021Inngår i: Nanoscale Advances, E-ISSN 2516-0230, Vol. 3, nr 15, s. 4388-4394Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The electrical properties of an all-oxide core–shell ZnO–Co3O4 nanorod heterojunction were studied in the dark and under UV-vis illumination. The contact potential difference and current distribution maps were obtained utilizing new methods in dynamic multifrequency atomic force microscopy (AFM) such as electrostatic and conductive intermodulation AFM. Light irradiation modified the electrical properties of the nanorod heterojunction. The new techniques are able to follow the instantaneous local variation of the photocurrent, giving a two-dimensional (2D) map of the current–voltage curves and correlating the electrical and morphological features of the heterostructured core–shell nanorods.

  • 6.
    Donarelli, Maurizio
    et al.
    SENSOR Lab., Department of Information Engineering, University of Brescia.
    Milan, Riccardo
    SENSOR Lab., Department of Information Engineering, University of Brescia.
    Rigoni, Federica
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. SENSOR Lab., Department of Information Engineering, University of Brescia.
    Drera, Giovanni
    Department of Mathematics and Physics, Catholic University of Sacred Heart.
    Sangaletti, Luigi
    Department of Mathematics and Physics, Catholic University of Sacred Heart.
    Ponzoni, Andrea
    National Institute of Optics, National Research Council (CNR-INO), Unit of Brescia.
    Baratto, Camilla
    SENSOR Lab., Department of Information Engineering, University of Brescia.
    Sberveglier, Giorgio
    SENSOR Lab., Department of Information Engineering, University of Brescia.
    Comini, Elisabetta
    SENSOR Lab., Department of Information Engineering, University of Brescia.
    Anomalous gas sensing behaviors to reducing agents of hydrothermally grown α-Fe2O3 nanorods2018Inngår i: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 273, s. 1237-1245Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    α-Fe2O3 nanorods have been grown by hydrothermal method, dispersed in ethanol and drop casted on a pre-patterned alumina substrate with Pt electrodes. Their morphology, crystalline and electronic properties have been investigated by Scanning Electron Microscopy, Raman and X-ray Photoelectron Spectroscopies and X-ray Diffraction. The so-fabricated devices have been used for hydrogen gas sensing, showing their ability to detect H2 at operating temperatures > 200 °C, at relative humidity values comprised from 0% to 50%. The sensing behavior of α-Fe2O3 nanorods is compatible with an n to p conductivity transition when the operating temperature is increased up to 300 °C. Outstanding p-type hydrogen sensing performances of α-Fe2O3 have been observed and reported. Besides H2 detection, the α-Fe2O3 nanorods-based device is a good humidity sensor, at room temperature (n-type) and at 400 °C (p-type). CO and ethanol sensing performances have been investigated at different operating temperatures and relative humidity values. CO and ethanol anomalous acceptor-like behaviors at 200 °C in humid air has been explained by the interactions of these target gases with the water molecules adsorbed on the metal oxide surfaces. An explanation of the n–p behavior transition at T > 200 °C in terms of band bending is reported.

  • 7.
    Ghamgosar, Pedram
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Rigoni, Federica
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Gilzad Kohan, Mojtaba
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    You, Shujie
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Morales, Edgar Abarca
    Luleå tekniska universitet.
    Mazzaro, Raffaello
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Morandi, Vittorio
    Institute for Microelectronics and Microsystems Section of Bologna , National Research Council , Bologna , Italy..
    Almqvist, Nils
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Concina, Isabella
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Self-Powered Photodetectors Based on Core-Shell ZnO-Co3O4 Nanowire Heterojunctions2019Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, nr 26, s. 23454-23462Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Self-powered photodetectors operating in the UV–visible–NIR window made of environmentally friendly, earth abundant, and cheap materials are appealing systems to exploit natural solar radiation without external power sources. In this study, we propose a new p–n junction nanostructure, based on a ZnO–Co3O4 core–shell nanowire (NW) system, with a suitable electronic band structure and improved light absorption, charge transport, and charge collection, to build an efficient UV–visible–NIR p–n heterojunction photodetector. Ultrathin Co3O4 films (in the range 1–15 nm) were sputter-deposited on hydrothermally grown ZnO NW arrays. The effect of a thin layer of the Al2O3 buffer layer between ZnO and Co3O4 was investigated, which may inhibit charge recombination, boosting device performance. The photoresponse of the ZnO–Al2O3–Co3O4 system at zero bias is 6 times higher compared to that of ZnO–Co3O4. The responsivity (R) and specific detectivity (D*) of the best device were 21.80 mA W–1and 4.12 × 1012 Jones, respectively. These results suggest a novel p–n junction structure to develop all-oxide UV–vis photodetectors based on stable, nontoxic, low-cost materials.

  • 8.
    Ghamgosar, Pedram
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Rigoni, Federica
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    You, Shujie
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Dobryden, Iliya
    Division of Surface and Corrosion Science, KTH Royal Institute of Technolog.
    Gilzad Kohan, Mojtaba
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Pellegrino, Anna Lucia
    Dipartimento Scienze Chimiche, Università degli Studi di Catania, INSTM UdR-Catania.
    Concina, Isabella
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Almqvist, Nils
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Malandrino, Graziella
    Dipartimento Scienze Chimiche, Università degli Studi di Catania, INSTM UdR-Catania.
    Vomiero, Alberto
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    ZnO-Cu2O core-shell nanowires as stable and fast response photodetectors2018Inngår i: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 51, s. 308-316Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this work, we present all-oxide p-n junction core-shell nanowires (NWs) as fast and stable self-powered photodetectors. Hydrothermally grown n-type ZnO NWs were conformal covered by different thicknesses (up to 420 nm) of p-type copper oxide layers through metalorganic chemical vapor deposition (MOCVD). The ZnO NWs exhibit a single crystalline Wurtzite structure, preferentially grown along the [002] direction, and energy gap Eg=3.24 eV. Depending on the deposition temperature, the copper oxide shell exhibits either a crystalline cubic structure of pure Cu2O phase (MOCVD at 250 °C) or a cubic structure of Cu2O with the presence of CuO phase impurities (MOCVD at 300 °C), with energy gap of 2.48 eV. The electrical measurements indicate the formation of a p-n junction after the deposition of the copper oxide layer. The core-shell photodetectors present a photoresponsivity at 0 V bias voltage up to 7.7 µA/W and time response ≤0.09 s, the fastest ever reported for oxide photodetectors in the visible range, and among the fastest including photodetectors with response limited to the UV region. The bare ZnO NWs have slow photoresponsivity, without recovery after the end of photo-stimulation. The fast time response for the core-shell structures is due to the presence of the p-n junctions, which enables fast exciton separation and charge extraction. Additionally, the suitable electronic structure of the ZnO-Cu2O heterojunction enables self-powering of the device at 0 V bias voltage. These results represent a significant advancement in the development of low-cost, high efficiency and self-powered photodetectors, highlighting the need of fine tuning the morphology, composition and electronic properties of p-n junctions to maximize device performances.

  • 9.
    Tahira, Aneela
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Institute of Chemistry, University of Sindh, Jamshoro, 76080, Sindh, Pakistan.
    Mazzaro, Raffaello
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. CNR-IMM, Via Piero Gobetti 101, Bologna, 40129, Italy.
    Rigoni, Federica
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    Nafady, Ayman
    Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
    Shaikh, Shoyebmohamad F.
    Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
    Alothman, Asma A.
    Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
    Alshgari, Razan A.
    Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
    Ibupoto, Zafar Hussian
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. Institute of Chemistry, University of Sindh, Jamshoro, 76080, Sindh, Pakistan.
    A simple and efficient visible light photodetector based on Co3O4/ZnO composite2021Inngår i: Optical and quantum electronics, ISSN 0306-8919, E-ISSN 1572-817X, Vol. 53, nr 9, artikkel-id 534Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Herein, we propose for the first time visible light photodetector based on n-type ZnO nanorods decorated with p-type Co3O4 nanowires. The heterojunction was fabricated on fluorine doped tin oxide (FTO) glass substrate by low temperature aqueous chemical growth method. ZnO exhibits nanorod morphology and cobalt oxide possesses nanowire shape with sharp tail. Energy dispersive spectroscopy confirmed the presence of Zn, O, and Co elements in the heterojunction. ZnO and Co3O4 have hexagonal and cubic phases, respectively, as confirmed by XRD. The dense and perpendicular ZnO nanorods are acting as a scattering layer for visible light, while Co3O4 nanowires act as a visible-light absorber. The all oxide p–n junction can operate as visible light photodetector. Furthermore, the heterojunction also shows a reproducible and fast response for the detection of visible light. Optimization of the device is needed (presence of buffer layers, tuning a thickness of the optical absorber) to improve its functionalities. 

1 - 9 of 9
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf