Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Svensson, Terese
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering.
    Semantic Segmentation of Iron Ore Pellets with Neural Networks2019Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    This master’s thesis evaluates five existing Convolutional Neural Network (CNN) models for semantic segmentation of optical microscopy images of iron ore pellets. The models are PSPNet, FC-DenseNet, DeepLabv3+, BiSeNet and GCN. The dataset used for training and evaluation contains 180 microscopy images of iron ore pellets collected from LKAB’s experimental blast furnace in Luleå, Sweden. This thesis also investigates the impact of the dataset size and data augmentation on performance. The best performing CNN model on the task was PSPNet, which had an average accuracy of 91.7% on the dataset. Simple data augmentation techniques, horizontal and vertical flipping, improved the models’ average accuracy performance with 3.4% on average. From the results in this thesis, it was concluded that there are benefits to using CNNs for analysis of iron ore pellets, with time-saving and improved analysis as the two notable areas.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf