Endre søk
Begrens søket
1 - 4 of 4
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Göktepe, Burak
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Hazim, Ammar
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.
    Gebart, Rikard
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundström, Staffan
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.
    Cold flow experiments in an entrained flow gasification reactor with a swirl-stabilized pulverized biofuel burner2016Inngår i: International Journal of Multiphase Flow, ISSN 0301-9322, E-ISSN 1879-3533, Vol. 85, s. 267-277Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Short particle residence time in entrained flow gasifiers demands the use of pulverized fuel particles to promote mass and heat transfer, resulting high fuel conversion rate. The pulverized biomass particles have a wide range of aspect ratios which can exhibit different dispersion behavior than that of spherical particles in hot product gas flows. This results in spatial and temporal variations in temperature distribution, the composition and the concentration of syngas and soot yield. One way to control the particle dispersion is to impart a swirling motion to the carrier gas phase. This paper investigates the dispersion behavior of biomass fuel particles in swirling flows. A two-phase particle image velocimetry technique was applied to simultaneously measure particle and gas phase velocities in turbulent isothermal flows. Post-processed PIV images showed that a poly-dispersed behavior of biomass particles with a range of particle size of 112-160 μm imposed a significant impact on the air flow pattern, causing air flow decelerated in a region of high particle concentration. Moreover, the velocity field, obtained from individually tracked biomass particles showed that the swirling motion of the carrier air flow gives arise a rapid spreading of the particles

  • 2.
    Jayawickrama, Thamali Rajika
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Chishty, Muhammad Aqib
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Haugen, Nils Erland L.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. Department of Thermal Energy, SINTEF Energy Research, Kolbjørn Hejes vei 1 A, 7491 Trondheim, Norway.
    Babler, Matthaus U.
    Department of Chemical Engineering, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.
    Umeki, Kentaro
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    The effects of Stefan flow on the flow surrounding two closely spaced particles2023Inngår i: International Journal of Multiphase Flow, ISSN 0301-9322, E-ISSN 1879-3533, Vol. 166, artikkel-id 104499Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The aim of the work was to study the effects of neighboring particles with uniform Stefan flow in particle–fluid flows. Particle-resolved numerical simulations were carried out for particles emitting a uniform Stefan flow into the bulk fluid. The bulk fluid was uniform and isothermal. The Stefan flow volume emitted from the two particles is equal, such that it represents idealized conditions of reacting particles. Particles were located in tandem arrangement and particle distances were varied between 1.1 and 10 particle diameters (). Three particle Reynolds numbers were considered during the simulations ( and 14), which is similar to our previous studies. Three Stefan flow velocities were also considered during simulations to represent inward, outward, and no Stefan flow. The drag coefficient of the particles without Stefan flow showed that the results fit with previous studies on neighbor particle effects. When the particle distance is greater than 2.5 diameters (), the effects of Stefan flow and neighboring particles are independent of each other. I.e. an outward Stefan flow decreases the drag coefficient () while an inward Stefan flow increases it and the upstream particle experience a higher  than the downstream particle. When , the effect of Stefan flow is dominant, such that equal and opposite pressure forces act on the particles, resulting in a repelling force between the two neighboring particles. The pressure force showed a large increase compared to the viscous force at these distances. The effect of Stefan flow is weakened at higher Reynolds numbers. A model was developed for the calculation of the drag coefficient. The model, which reproduce the results from the numerical simulations presented above, is a product of independent models that describe the effects of both neighboring particles and two distinguished effects of the Stefan flow.

    Fulltekst (pdf)
    fulltext
  • 3.
    Jayawickrama, Thamali Rajika
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Haugen, Nils Erland L.
    Department of Energy and Process Engineering, Norwegian University of Science and Technology, Kolbjørn Hejes vei 1 B, 7491 Trondheim, Norway. Department of Thermal Energy, SINTEF Energy Research, Kolbjørn Hejes vei 1 A, 7491 Trondheim, Norway.
    Babler, Matthaus U.
    Department of Chemical Engineering, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.
    Chishty, Muhammad Aqib
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Umeki, Kentaro
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    The effect of Stefan flow on Nusselt number and drag coefficient of spherical particles in non-isothermal gas flow2021Inngår i: International Journal of Multiphase Flow, ISSN 0301-9322, E-ISSN 1879-3533, Vol. 140, artikkel-id 103650Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A Stefan flow can be generated during a phase change or reactions of a particle immersed in a fluid. This study investigates the effect of Stefan flow on the exchange of momentum (drag coefficient (CD)) and heat transfer (Nusselt number (Nu)) between the particle and bulk-fluid. Fully resolved simulations were carried out for a flow near a spherical particle immersed in a uniform bulk flow. The immersed boundary method is used for implementing fluid-solid interactions and the particle is considered as a static boundary with fixed boundary conditions. In a non-isothermal flow, the changes in thermophysical properties at the boundary layer played a role in the variation of CD and Nu by a Stefan flow further. The previously developed model for the drag coefficient of a spherical particle in a uniform isothermal flow was modified for a uniform non-isothermal flow. The model is developed based on physical interpretation. A new model is developed for the Nusselt number for a spherical particle with a uniform Stefan flow combining available models in literature. The models are validated for Stefan Reynolds number −8⩽Resf,p⩽25 and particle Reynolds number of 2⩽Ref⩽30 in gas flow (i.e. Pr≈0.7).

  • 4.
    Jayawickrama, Thamali Rajika
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Haugen, Nils Erland L.
    Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway.Department of Thermal Energy, SINTEF Energy Research, Trondheim, Norway.
    Babler, Matthaus U.
    Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
    Chishty, Muhammad Aqib
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Umeki, Kentaro
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    The effect of Stefan flow on the drag coefficient of spherical particles in a gas flow2019Inngår i: International Journal of Multiphase Flow, ISSN 0301-9322, E-ISSN 1879-3533, Vol. 117, s. 130-137Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Particle laden flows with reactive particles are common in industrial applications. Chemical reactions inside the particle can generate a Stefan flow that affects heat, mass and momentum transfer between the particle and the bulk flow. This study aims at investigating the effect of Stefan flow on the drag coefficient of a spherical particle immersed in a uniform flow under isothermal conditions. Fully resolved simulations were carried out for particle Reynolds numbers ranging from 0.2 to 14 and Stefan flow Reynolds numbers from (-1) to 3, using the immersed boundary method for treating fluid-solid interactions. Results showed that the drag coefficient decreased with an increase of the outward Stefan flow. The main reason was the change in viscous force by the expansion of the boundary layer surrounding the particle. A simple model was developed based on this physical interpretation. With only one fitting parameter, the performance of the model to describe the simulation data were comparable to previous empirical models.

1 - 4 of 4
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf