Endre søk
Begrens søket
1 - 48 of 48
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Alagumalai, Vasudevan
    et al.
    Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India.
    Shanmugam, Vigneshwaran
    Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India.
    Balasubramanian, Navin Kumar
    Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India.
    Krishnamoorthy, Yoganandam
    Department of Mechanical Engineering, ARM College of Engineering and Technology, Kanchipuram 603209, India.
    Ganesan, Velmurugan
    Department of Agricultural Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Sas, Gabriel
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Berto, Filippo
    Department of Mechanical Engineering, Norwegian University of Science and Technology, 13 7491 Trondheim, Norway.
    Chanda, Avishek
    Centre for Advanced Composite Materials, Department of Mechanical Engineering, The University of Auckland, Auckland 1142, New Zealand.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Impact response and damage tolerance of hybrid glass/kevlar-fibre epoxy structural composites2021Inngår i: Polymers, E-ISSN 2073-4360, Vol. 13, nr 16Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The present study is aimed at investigating the effect of hybridisation on Kevlar/E-Glass based epoxy composite laminate structures. Composites with 4 mm thickness and 16 layers of fibre (14 layers of E-glass centred and 2 outer layers of Kevlar) were fabricated using compression moulding technique. The fibre orientation of the Kevlar layers had 3 variations (0, 45 and 60°), whereas the E-glass fibre layers were maintained at 0° orientation. Tensile, flexural, impact (Charpy and Izod), interlaminar shear strength and ballistic impact tests were conducted. The ballistic test was performed using a gas gun with spherical hard body projectiles at the projectile velocity of 170 m/s. The pre-and post-impact velocities of the projectiles were measured using a high-speed camera. The energy absorbed by the composite laminates was further reported during the ballistic test, and a computerised tomographic scan was used to analyse the impact damage. The composites with 45° fibre orientation of Kevlar fibres showed better tensile strength, flexural strength, Charpy impact strength, and energy absorption. The energy absorbed by the composites with 45° fibre orientation was 58.68 J, which was 14% and 22% higher than the 0° and 60° oriented composites. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

  • 2.
    Arinaitwe, Evalyne
    et al.
    Fire Safety Engineering, Lund University, Sweden.
    McNamee, Margaret
    Fire Safety Engineering, Lund University, Sweden.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Is the fire performance of phase change materials a significant barrier to implementation in building applications?2024Inngår i: Journal of Energy Storage, ISSN 2352-152X, E-ISSN 2352-1538, Vol. 94, artikkel-id 112421Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This paper examines the reaction-to-fire behaviour of building materials containing phase change materials by predicting their fire classification according to the European reaction-to-fire classification system (Euroclasses). While various building materials containing PCMs exist today, their application in buildings has been somewhat limited due to the fire behaviour of these building materials. Existing research has focused on small scale testing which does not allow determination of the Euroclass of the material. In this application, large scale performance is predicted based on previously published small scale data to provide some valuable insights into the expected fire performance of these materials. As a starting point, a systematic literature review on phase change materials (PCM) and fire behaviour was conducted, with the purpose of identifying all existing literature concerning experimental investigation of the fire behaviour of building materials containing PCMs. In total, 816 articles were selected from the literature search. After screening of these papers, 51 articles were fully reviewed and included in the next step of the study. In the next step, the reaction-to-fire behaviour of the building materials with PCMs that were identified from the literature was predicted using the ConeTools simulation program. The input data required for ConeTools was obtained from the identified literature. Initially, 27 of the 51 studies used cone calorimetry as a fire testing method and could therefore be considered for the Euroclass assessment. However, of the 27 studies, only 17 studies provided information on both the heat release rates (HRR) and time to ignition (TTI) and were selected for use in the ConeTools program. The ConeTools program predicted Euroclasses for all the building materials containing PCMs from the selected 17 studies. The predicted Euroclasses for most materials was low (i.e. fire classes ‘D' or ‘E or worse') which confirms that materials containing PCMs generally have a low react-to-fire behaviour even with addition of flame retardants (FR). Our findings indicate that the fire behaviour, typically Euroclass ‘D' or ‘E or worse', of the building materials containing PCMs is indeed a barrier to their implementation in the building applications where Euroclass C or higher is required, e.g. in evacuation pathways or certain public spaces. The predictions of the Euroclasses based on ConeTools need to be confirmed using Single Burning Item tests (EN 13823) and/or Room Corner tests (ISO 9705) in the future, to enable a better understanding of fire behaviour of these building materials.

    Fulltekst (pdf)
    fulltext
  • 3.
    Babu, Karthik
    et al.
    Department of Mechanical Engineering, Centurion University of Technology and Management, R.Sitapur, Odisha, 761211, India.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Shanmugam, Vigneshwaran
    Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha; Institute of Medical and Technical Sciences, Chennai, 602 105, Tamil Nadu, India.
    Mensah, Rhoda Afriye
    School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Sas, Gabriel
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Restás, Ágoston
    Department of Fire Protection and Rescue Control, National University of Public Service, Budapest, 1011, Hungary.
    Berto, Filippo
    Department of Mechanical Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
    Fire Behavior of 3D-Printed Polymeric Composites2021Inngår i: Journal of materials engineering and performance (Print), ISSN 1059-9495, E-ISSN 1544-1024, Vol. 30, nr 7, s. 4745-4755Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    3D printing or additive manufacturing (AM) is considered as a flexible manufacturing method with the potential for substantial innovations in fabricating geometrically complicated structured polymers, metals, and ceramics parts. Among them, polymeric composites show versatility for applications in various fields, such as constructions, microelectronics and biomedical. However, the poor resistance of these materials against fire must be considered due to their direct relation to human life conservation and safety. In this article, the recent advances in the fire behavior of 3D-printed polymeric composites are reviewed. The article describes the recently developed methods for improving the flame retardancy of 3D-printed polymeric composites. Consequently, the improvements in the fire behavior of 3D-printed polymeric materials through the change in formulation of the composites are discussed. The article is novel in the sense that it is one of the first studies to provide an overview regarding the flammability characteristics of 3D-printed polymeric materials, which will further incite research interests to render AM-based materials fire-resistant.

  • 4.
    Babu, Karthik
    et al.
    Center for Polymer Composites and Natural Fiber Research, Tamil Nadu 625005, India.
    Rendén, Gabriella
    Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
    Afriyie Mensah, Rhoda
    School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
    Kim, Nam Kyeun
    Centre for Advanced Composite Materials, Department of Mechanical Engineering, University of Auckland, Auckland 1142, New Zealand.
    Jiang, Lin
    School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
    Xu, Qiang
    School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
    Restás, Ágoston
    Department of Fire Protection and Rescue Control, National University of Public Service, H-1011 Budapest, Hungary.
    Esmaeely Neisiany, Rasoul
    Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran.
    Hedenqvist, Mikael S.
    Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Byström, Alexandra
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap.
    A Review on the Flammability Properties of Carbon-Based Polymeric Composites: State-of-the-Art and Future Trends2020Inngår i: Polymers, E-ISSN 2073-4360, Vol. 12, nr 7, artikkel-id 1518Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Carbon based fillers have attracted a great deal of interest in polymer composites because of their ability to beneficially alter properties at low filler concentration, good interfacial bonding with polymer, availability in different forms, etc. The property alteration of polymer composites makes them versatile for applications in various fields, such as constructions, microelectronics, biomedical, and so on. Devastations due to building fire stress the importance of flame-retardant polymer composites, since they are directly related to human life conservation and safety. Thus, in this review, the significance of carbon-based flame-retardants for polymers is introduced. The effects of a wide variety of carbon-based material addition (such as fullerene, CNTs, graphene, graphite, and so on) on reaction-to-fire of the polymer composites are reviewed and the focus is dedicated to biochar-based reinforcements for use in flame retardant polymer composites. Additionally, the most widely used flammability measuring techniques for polymeric composites are presented. Finally, the key factors and different methods that are used for property enhancement are concluded and the scope for future work is discussed.

  • 5.
    Das, Oisik
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Babu, Karthik
    Department of Mechanical Engineering, Assam Energy Institute, Centre of Rajiv Gandhi Institute of Petroleum Technology, Sivasagar, 785697, Assam, India.
    Shanmugam, Vigneshwaran
    Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602 105, Tamilnadu, India.
    Sykam, Kesavarao
    Polymers & Functional Materials Division, Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India.
    Tebyetekerwa, Mike
    School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane 4072, Australia.
    Neisiany, Rasoul Esmaeely
    Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, 9617976487, Iran.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Sas, Gabriel
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Gonzalez-Libreros, Jaime
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Capezza, Antonio J.
    Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 100 44, Sweden.
    Hedenqvist, Mikael S.
    Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 100 44, Sweden.
    Berto, Filippo
    Department of Mechanical Engineering, Norwegian University of Science and Technology, Trondheim, 7491, Norway.
    Ramakrishna, Seeram
    Center for Nanofibres and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, Singapore, 117576, Singapore.
    Natural and industrial wastes for sustainable and renewable polymer composites2022Inngår i: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 158, artikkel-id 112054Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    By-products management from industrial and natural (agriculture, aviculture, and others) activities and products are critical for promoting sustainability, reducing pollution, increasing storage space, minimising landfills, reducing energy consumption, and facilitating a circular economy. One of the sustainable waste management approaches is utilising them in developing biocomposites. Biocomposites are eco-friendly materials because of their sustainability and environmental benefits that have comparable performance properties to the synthetic counterparts. Biocomposites can be developed from both renewable and industrial waste, making them both energy efficient and sustainable. Because of their low weight and high strength, biocomposite materials in applications such as automobiles can minimise fuel consumption and conserve energy. Furthermore, biocomposites in energy-based applications could lead to savings in both the economy and energy consumption. Herein, a review of biocomposites made from various wastes and their related key properties (e.g. mechanical and fire) are provided. The article systematically highlights the individual wastes/by-products from agriculture and materials processing industries for composites manufacturing in terms of their waste components (materials), modifications, resultant properties, applications and energy efficiency. Finally, a perspective for the future of biowastes and industrial wastes in polymer composites is discussed.

  • 6.
    Das, Oisik
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Mensah, Rhoda Afriyie
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Balasubramanian, Karthik Babu Nilagiri
    Department of Mechanical Engineering, Assam Energy Institute, Centre of Rajiv Gandhi Institute of Petroleum Technology, 785697, Sivasagar, Assam, India.
    Shanmugam, Vigneshwaran
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Hedenqvist, Mikael S
    Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
    Rantuch, Peter
    Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, Jana Bottu 2781/25, 917 24 Trnava, Slovakia.
    Martinka, Jozef
    Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, Jana Bottu 2781/25, 917 24 Trnava, Slovakia.
    Jiang, Lin
    School of Mechanical Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China.
    Xu, Qiang
    School of Mechanical Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China.
    Neisiany, Rasoul Esmaeely
    Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran.
    Lin, Chia-Feng
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Träteknik.
    Mohanty, Amar
    School of Engineering, University of Guelph, Albert A. Thornbrough Building, 80 South Ring Road East, ON N1G 2W1, Guelph, Canada.
    Misra, Manjusri
    School of Engineering, University of Guelph, Albert A. Thornbrough Building, 80 South Ring Road East, ON N1G 2W1, Guelph, Canada.
    Functionalised biochar in biocomposites: The effect of fire retardants, bioplastics and processing methods2023Inngår i: Composites Part C: Open Access, E-ISSN 2666-6820, Vol. 11, artikkel-id 100368Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Fire retardants, although can impart fire-safety in polymeric composites, are detrimental to the mechanical properties. Biochar can be used, in conjunction with fire retardants, to create a balance between fire-safety and mechanical performance. It is possible to thermally dope fire retardants into the pores of biochar to make it functionalised. Thus, the current work is intended in identifying a composite having the combination of the most desirable fire retardant, bioplastic, and a suitable processing method. A comparison was made between two fire retardants (lanosol and ammonium polyphosphate), bioplastics (wheat gluten and polyamide 11), and composite processing methods (compression and injection moulding). It was found that wheat gluten containing ammonium polyphosphate-doped biochar made by compression moulding had the best fire-safety properties with the lowest peak heat release rate (186 kW/m2), the highest fire performance index (0.6 m2s/kW), and the lowest fire growth index (1.6 kW/ms) with acceptable mechanical properties compared to the corresponding neat bioplastic. Thus, for gluten-based polymers, the use of ammonium polyphosphate thermally doped into biochar processed by compression moulding is recommended to both simultaneously improve fire-safety and conserve the mechanical strength of the resulting biocomposites.

    Fulltekst (pdf)
    fulltext
  • 7.
    Das, Oisik
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Mensah, Rhoda Afriyie
    School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
    George, Gejo
    Research and Post Graduate Department of Chemistry, St. Berchmans College, Changanacherry, Kerala, India.
    Jiang, Lin
    School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
    Xu, Qiang
    School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
    Neisiany, Rasoul Esmaeely
    Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, 9617976487, Iran.
    Umeki, Kentaro
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Jose E, Tomal
    Research and Post Graduate Department of Chemistry, St. Berchmans College, Changanacherry, Kerala, India.
    Phounglamcheik, Aekjuthon
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Hedenqvist, Mikael S.
    Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm100 44, Sweden.
    Restás, Ágoston
    Department of Fire Protection and Rescue Control, National University of Public Service, H-1011 Budapest, Hungary.
    Sas, Gabriel
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Berto, Filippo
    Department of Mechanical Engineering, Norwegian University of Science and Technology, Trondheim, 7491, Norway.
    Flammability and mechanical properties of biochars made in different pyrolysis reactors2021Inngår i: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 152, artikkel-id 106197Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The effect of pyrolysis reactors on the properties of biochars (with a focus on flammability and mechanical characteristics) were investigated by keeping factors such as feedstock, carbonisation temperature, heating rate and residence time constant. The reactors employed were hydrothermal, fixed-bed batch vertical and fixed-bed batch horizontal-tube reactors. The vertical and tube reactors, at the same temperature, produced biochars having comparable elemental carbon content, surface functionalities, thermal degradation pattern and peak heat release rates. The hydrothermal reactor, although, a low-temperature process, produced biochar with high fire resistance because the formed tarry volatiles sealed water inside the pores, which hindered combustion. However, the biochar from hydrothermal reactor had the lowest nanoindentation properties whereas the tube reactor-produced biochar at 300 °C had the highest nanoindentation-hardness (290 Megapascal) and modulus (ca. 4 Gigapascal) amongst the other tested samples. Based on the inherent flammability and mechanical properties of biochars, polymeric composites’ properties can be predicted that can include them as constituents.

  • 8.
    Das, Oisik
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Materialvetenskap. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China.
    Neisiany, Rasoul Esmaeely
    Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, Iran.
    Capezza, Antonio Jose
    Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden. Department of Plant Breeding, SLU Swedish University of Agricultural Sciences, Alnarp, Sweden.
    Hedenqvist, Mikael S.
    Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Xu, Qiang
    School of Mechanical Engineering, Nanjing University of Science and Technology, 210094 Nanjing, China.
    Jiang, Lin
    School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China.
    Ji, Dongxiao
    Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore.
    Ramakrishna, Seeram
    Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore.
    The need for fully bio-based facemasks to counter coronavirus outbreaks: A perspective2020Inngår i: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 736, artikkel-id 139611Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The onset of coronavirus pandemic has sparked a shortage of facemasks in almost all nations. Without this personal protective equipment, healthcare providers, essential workers, and the general public are exposed to the risk of infection. In light of the aforementioned, it is critical to balance the supply and demand for masks. COVID-19 will also ensure that masks are always considered as an essential commodity in future pandemic preparedness. Moreover, billions of facemasks are produced from petrochemicals derived raw materials, which are non-degradable upon disposal after their single use, thus causing environmental pollution and damage. The sustainable way forward is to utilise raw materials that are side-stream products of local industries to develop facemasks having equal or better efficiency than the conventional ones. In this regard, wheat gluten biopolymer, which is a by-product or co-product of cereal industries, can be electrospun into nanofibre membranes and subsequently carbonised at over 700 °C to form a network structure, which can simultaneously act as the filter media and reinforcement for gluten-based masks. In parallel, the same gluten material can be processed into cohesive thin films using plasticiser and hot press. Additionally, lanosol, a naturally-occurring substance, imparts fire (V-0 rating in vertical burn test), and microbe resistance in gluten plastics. Thus, thin films of flexible gluten with very low amounts of lanosol (<10 wt%) can be bonded together with the carbonised mat and shaped by thermoforming to create the facemasks. The carbon mat acting as the filter can be attached to the masks through adapters that can also be made from injection moulded gluten. The creation of these masks could simultaneously be effective in reducing the transmittance of infectious diseases and pave the way for environmentally benign sustainable products.

  • 9.
    Dominguez, Armand
    et al.
    Lund University, Div. of Combustion Physics, Box 113, 221 00 Lund, Sweden.
    Borggren, Jesper
    Beamonics AB, Tellusgatan 13, 224 57 Lund, Sweden.
    Xu, Can
    Beamonics AB, Tellusgatan 13, 224 57 Lund, Sweden.
    Otxoterena, Paul
    RISE Research Institutes of Sweden, Box 857, 501 15 Borås, Sweden.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand. RISE Research Institutes of Sweden, Box 857, 501 15 Borås, Sweden.
    Leffler, Tomas
    Vattenfall AB, Laboratorievägen, 814 26 Älvkarleby, Sweden; Chalmers, Chemistry and Chemical Engineering, 412 96 Göteborg, Sweden.
    Bood, Joakim
    Lund University, Div. of Combustion Physics, Box 113, 221 00 Lund, Sweden.
    A compact Scheimpflug lidar imaging instrument for industrial diagnostics of flames2023Inngår i: Measurement science and technology, ISSN 0957-0233, E-ISSN 1361-6501, Vol. 34, nr 7, artikkel-id 075901Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Scheimpflug lidar is a compact alternative to traditional lidar setups. With Scheimpflug lidar it is possible to make continuous range-resolved measurements. In this study we investigate the feasibility of a Scheimpflug lidar instrument for remote sensing in pool flames, which are characterized by strong particle scattering, large temperature gradients, and substantial fluctuations in particle distribution due to turbulence. An extinction coefficient can be extracted using the information about the transmitted laser power and the spatial extent of the flame. The transmitted laser power is manifested by the intensity of the 'echo' from a hard-target termination of the beam located behind the flame, while the information of the spatial extent of the flame along the laser beam is provided by the range-resolved scattering signal. Measurements were performed in heptane and diesel flames, respectively.

    Fulltekst (pdf)
    fulltext
  • 10.
    El Houssami, Mohamad
    et al.
    Efectis, Espace Technologique, Route de l'Orme des Merisiers, Saint-Aubin, France.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand. Fire and Safety, RISE Research Institutes of Sweden, Borås, Sweden.
    Fredriksson, Henrik
    Fire and Safety, RISE Research Institutes of Sweden, Borås, Sweden.
    Drean, Virginie
    Efectis, Espace Technologique, Route de l'Orme des Merisiers, Saint-Aubin, France.
    Guillaume, Eric
    Efectis, Espace Technologique, Route de l'Orme des Merisiers, Saint-Aubin, France.
    Hofmann-Böllinghaus, Anja
    Department of Safety of Structures, Bundesanstalt für Materialforschung und –prüfung (BAM), Berlin, Germany.
    Sandinge, Anna
    Fire and Safety, RISE Research Institutes of Sweden, Borås, Sweden.
    Fire safety of interior materials of buses2023Inngår i: Fire and Materials, ISSN 0308-0501, E-ISSN 1099-1018, Vol. 47, nr 7, s. 910-924Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This study provides an analysis on the fire safety of passengers and the fire protection of coaches and buses. A brief review of major bus fire incidents, an overview of current regulations in Europe, and their limitations are presented. The study finds that the current small-scale fire test methods described in UN ECE Reg No. 118 need to be replaced by test methods that can assess the reaction to fire of materials when exposed to ignition sources of varying sizes. To address these shortcomings, the study proposed an expert recommendation to update the material fire safety requirements and testing for buses. Additional measures are proposed, derived from objectives and strategies applied in other transport sectors, and can be tested through existing European and international standards, which are widely used by several industries. These measures aim to extend the time with tenable conditions for a safe evacuation in case of fire, reduce the degree of damage to buses, reduce the risk for fast and excessive thermal exposure on modern energy carriers needed for a more sustainable transport sector.

    Fulltekst (pdf)
    fulltext
  • 11.
    Försth, Michael
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Sjöström, Johan
    SP Technical Research Institute of Sweden, Borås, SP Sveriges Tekniska Forskningsinstitut, Brandteknik.
    Wickström, Ulf
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Andersson, Petra
    SP Technical Research Institute of Sweden, Borås.
    Girardin, Bertrand
    R2Fire Group/UMET-UMR CNRS 8207, Ecole Nationale Supérieure de Chimie de Lille.
    Characterization of the thermal exposure in the en 50399 cable test apparatus2015Inngår i: Fire and Materials 2015, 2-4 Feb 2015, San Francisco, USA: proceedings, Interscience Communications, 2015, s. 23-37Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The EN 50399 cable test is used for classification of cables within the European construction products regulation. Means to predict a cables performance in this test, based on material data and small scale test results is of great value for the development of new cable materials. A first step in developing a prediction tool should be to understand the heat exposure on the cables in the EN 50399 test apparatus. The heat load in e.g. the cone calorimeter is very well characterized whereas for EN 50399 only the burner power (20.5 kW) is known. In the cone calorimeter the heating is solely by radiation, whereas for the EN 50399 test a large fraction of the heat exposure depends on feed-back from the cable fire. This paper presents a measuring method for characterizing the thermal exposure inside the EN 50399 cable test apparatus without cables and with a cable rated Euroclass Dca. A new instrument for measuring thermal exposure simultaneously in several directions was developed for the purpose, and thereby the non-isotropic exposure on the cables at different position on the ladder could be investigated

  • 12.
    Ganesan, Velmurugan
    et al.
    Department of Agricultural Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India.
    Shanmugam, Vigneshwaran
    Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India.
    Kaliyamoorthy, Babu
    Department of Mechanical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India.
    Sanjeevi, Sekar
    Department of Mechanical Engineering, Hindusthan Institute of Technology, Coimbatore 641028, India.
    Shanmugam, Suresh Kumar
    Faculty of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626128, India.
    Alagumalai, Vasudevan
    Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India.
    Krishnamoorthy, Yoganandam
    Department of Mechanical Engineering, ARM College of Engineering and Technology, Chennai 602105, India.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Sas, Gabriel
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Razavi, Seyed Mohammad Javad
    Department of Mechanical Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Optimisation of Mechanical Properties in Saw-Dust/Woven-Jute Fibre/Polyester Structural Composites under Liquid Nitrogen Environment Using Response Surface Methodology2021Inngår i: Polymers, E-ISSN 2073-4360, Vol. 13, nr 15, artikkel-id 2471Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Natural fibre-based composites are replacing traditional materials in a wide range of structural applications that are used in different environments. Natural fibres suffer from thermal shocks, which affects the use of these composites in cold environment. Considering these, a goal was set in the present research to investigate the impact of cryogenic conditions on natural fibre composites. Composites were developed using polyester as matrix and jute-fibre and waste Teak saw-dust as reinforcement and filler, respectively. The effects of six parameters, viz., density of saw-dust, weight ratio of saw-dust, grade of woven-jute, number of jute layers, duration of cryogenic treatment of composite and duration of alkaline treatment of fibres on the mechanical properties of the composite was evaluated with an objective to maximise hardness, tensile, impact and flexural strengths. Taguchi method was used to design the experiments and response-surface methodology was used to model, predict and plot interactive surface plots. Results indicated that the duration of cryogenic treatment had a significant effect on mechanical properties, which was better only up to 60 min. The models were found to be statistically significant. The study concluded that saw-dust of density 300 kg/m(3) used as a filler with a weight ratio of 13 wt.% and a reinforcement of a single layer of woven-jute-fibre mat of grade 250 gsm subjected to alkaline treatment for 4 h in a composite that has undergone 45 min of cryogenic treatment presented an improvement of 64% in impact strength, ca. 21% in flexural strength, ca. 158% in tensile strength and ca. 28% in hardness.

  • 13.
    Garskaite, Edita
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Träteknik.
    Estevez, Maria M.
    Aquateam COWI AS, Karvesvingen 2, Oslo NO-0572, Norway.
    Byström, Alexandra
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Stankeviciute, Zivile
    Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania.
    Sokol, Denis
    Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania.
    Steele, Matthew
    Delong America, 4020 Rue St. Ambroise, Suite 473, Montreal H4C 2C7, Canada.
    Sandberg, Dick
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Träteknik.
    Studying the application of fish-farming net-cleaning waste as fire-retardant for Scots pine (Pinus sylvestris L.) sapwood2022Inngår i: EFB Bioeconomy Journal, ISSN 2667-0410, Vol. 2, artikkel-id 100025Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Optimising the exploitation of available waste resources for the recovery of their intrinsic value will be vital in the future circular economy society. Recovery of energy, nutrients and metals from waste streams is in focus today. This study aimed to evaluate the use of an aquaculture waste, i.e. the dried-solid waste discharge that generates by cleaning the fishing-nets, as a potential fire-retardancy promoter for Scots pine sapwood. As-received dried-solid waste from salmon-farming was calcined at different temperatures to evaluate material phase transformation and achieve homogeneous phase distribution. Thermal degradation of waste powders was studied by TG-FTIR gas analysis when annealing the material to temperatures up to 800°C, and the crystallinity, phase composition, morphology, elemental composition and particle sizes of as-received and calcined-waste materials at different temperatures were evaluated by XRD, FTIR, SEM/EDS, and TEM analyses. The flammability studies using cone calorimeter of Scots pine sapwood blocks treated with as-received and processed material is also reported and discussed. Results were promising, indicating that the aquaculture waste could be employed as an effective fire-retardant. The possibility of value-creation from waste discharges is enforced in this study so to promote the way towards waste valorisation and circular economy.

  • 14.
    Giorcelli, Mauro
    et al.
    Italian Institute of Technology, Via Livorno 60, 10144 Torino, Italy 1, 10129 Turin, Italy. Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Florence, Italy.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Sas, Gabriel
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Bartoli, Mattia
    Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Florence, Italy. Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
    A Review of Bio-Oil Production through Microwave-Assisted Pyrolysis2021Inngår i: Processes, ISSN 2227-9717, PROCESSES, Vol. 9, nr 3Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    The issue of sustainability is a growing concern and has led to many environmentally friendly chemical productions through a great intensification of the use of biomass conversion processes. Thermal conversion of biomass is one of the most attractive tools currently used, and pyrolytic treatments represent the most flexible approach to biomass conversion. In this scenario, microwave-assisted pyrolysis could be a solid choice for the production of multi-chemical mixtures known as bio-oils. Bio-oils could represent a promising new source of high-value species ranging from bioactive chemicals to green solvents. In this review, we have summarized the most recent developments regarding bio-oil production through microwave-induced pyrolytic degradation of biomasses.

  • 15.
    Girardin, Bertrand
    et al.
    R2Fire/UMET − UMR CNRS 8207, ENSCL, Avenue Dimitri Mendeleïev - Bât. C7a, CS 90108, 59652, Villeneuve d'Ascq, France.
    Fontaine, Gaëlle
    R2Fire/UMET − UMR CNRS 8207, ENSCL, Avenue Dimitri Mendeleïev - Bât. C7a, CS 90108, 59652, Villeneuve d'Ascq, France.
    Duquesne, Sophie
    R2Fire/UMET − UMR CNRS 8207, ENSCL, Avenue Dimitri Mendeleïev - Bât. C7a, CS 90108, 59652, Villeneuve d'Ascq, France.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand. SP Fire Research, SP Technical Resesarch Institute of Sweden.
    Bourbigot, Serge
    R2Fire/UMET − UMR CNRS 8207, ENSCL, Avenue Dimitri Mendeleïev - Bât. C7a, CS 90108, 59652, Villeneuve d'Ascq, France.
    Measurement of kinetics and thermodynamics of the thermal degradation for flame retarded materials: application to EVA/ATH/NC2017Inngår i: Journal of Analytical and Applied Pyrolysis, ISSN 0165-2370, E-ISSN 1873-250X, Vol. 124, s. 130-148Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The modelling of the behavior of a material exposed to fire is very complex and needs the coupling of fluid dynamics, combustion, heat and mass transfer, kinetics and so forth. A growing amount of studies and numerical models are reported in this field since the last decade. The aim of these models is to predict the fire behavior of wood, charring or non-charring polymers and even intumescent materials. However, these studies are seldom applied to formulated materials and especially flame retarded materials. In this study, an ethylene-vinyl acetate copolymer was formulated with a flame retardant (aluminum tri-hydroxide) and a synergist (nanoclays). A systematic approach for the characterization of the thermo-physical properties of the material as well as of its optical properties and the heat capacity of the decomposition gases is proposed and applied in this study. It is shown that it is possible to evaluate the input data required for pyrolysis modelling, even for multi decomposition steps materials. It is also shown that the diffusion of the gases inside the material had to be considered on the opposite of the classical assumption found in other studies. Indeed, using low mass diffusivity was the sole way to predict in the same time the temperature distribution and the mass loss rate of the material in a gasification experiments.

  • 16.
    Girardin, Bertrand
    et al.
    Unité Matériaux et Transformations (UMET)-CNRS UMR 8207-Group Reaction and Resistance to Fire (R2Fire), École Nationale Supérieure de Chimie de Lille, University of Lille, Avenue Mendeleiev, CS 90108, 59652 Villeneuve d'Ascq Cedex, France.
    Fontaine, Geêlle
    Unité Matériaux et Transformations (UMET)-CNRS UMR 8207-Group Reaction and Resistance to Fire (R2Fire), École Nationale Supérieure de Chimie de Lille, University of Lille, Avenue Mendeleiev, CS 90108, 59652 Villeneuve d'Ascq Cedex, France.
    Duquesne, Sophie
    Unité Matériaux et Transformations (UMET)-CNRS UMR 8207-Group Reaction and Resistance to Fire (R2Fire), École Nationale Supérieure de Chimie de Lille, University of Lille, Avenue Mendeleiev, CS 90108, 59652 Villeneuve d'Ascq Cedex, France.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion. SP Fire Research, SP Technical Research Institute of Sweden, P.O. Box 857, SE-501 15 Borås, Sweden.
    Bourbignot, Serge
    Unité Matériaux et Transformations (UMET)-CNRS UMR 8207-Group Reaction and Resistance to Fire (R2Fire), École Nationale Supérieure de Chimie de Lille, University of Lille, Avenue Mendeleiev, CS 90108, 59652 Villeneuve d'Ascq Cedex, France.
    Characterization of Thermo-Physical Properties of EVA/ATH: Application to Gasification Experiments and Pyrolysis Modeling2015Inngår i: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 8, nr 11, s. 7837-7863Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The pyrolysis of solid polymeric materials is a complex process that involves both chemical and physical phenomena such as phase transitions, chemical reactions, heat transfer, and mass transport of gaseous components. For modeling purposes, it is important to characterize and to quantify the properties driving those phenomena, especially in the case of flame-retarded materials. In this study, protocols have been developed to characterize the thermal conductivity and the heat capacity of an ethylene-vinyl acetate copolymer (EVA) flame retarded with aluminum tri-hydroxide (ATH). These properties were measured for the various species identified across the decomposition of the material. Namely, the thermal conductivity was found to decrease as a function of temperature before decomposition whereas the ceramic residue obtained after the decomposition at the steady state exhibits a thermal conductivity as low as 0.2 W/m/K. The heat capacity of the material was also investigated using both isothermal modulated Differential Scanning Calorimetry (DSC) and the standard method (ASTM E1269). It was shown that the final residue exhibits a similar behavior to alumina, which is consistent with the decomposition pathway of EVA/ATH. Besides, the two experimental approaches give similar results over the whole range of temperatures. Moreover, the optical properties before decomposition and the heat capacity of the decomposition gases were also analyzed. Those properties were then used as input data for a pyrolysis model in order to predict gasification experiments. Mass losses of gasification experiments were well predicted, thus validating the characterization of the thermo-physical properties of the material

  • 17.
    Javad Razavi, Seyed Mohammad
    et al.
    Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology (NTNU), Richard Birkelands vei 2b, 7491 Trondheim, Norway.
    Esmaeely Neisiany, Rasoul
    Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran.
    Razavi, Moe
    Department of Chemical Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran.
    Fakhar, Afsaneh
    Department of Chemical Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran.
    Shanmugam, Vigneshwaran
    Department of Mechanical Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai 602105, India.
    Alagumalai, Vasudevan
    Department of Mechanical Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai 602105, India.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Sas, Gabriel
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Efficient Improvement in Fracture Toughness of Laminated Composite by Interleaving Functionalized Nanofibers2021Inngår i: Polymers, E-ISSN 2073-4360, Vol. 13, nr 15, artikkel-id 2509Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Functionalized polyacrylonitrile (PAN) nanofibers were used in the present investigation to enhance the fracture behavior of carbon epoxy composite in order to prevent delamination if any crack propagates in the resin rich area. The main intent of this investigation was to analyze the efficiency of PAN nanofiber as a reinforcing agent for the carbon fiber-based epoxy structural composite. The composites were fabricated with stacked unidirectional carbon fibers and the PAN powder was functionalized with glycidyl methacrylate (GMA) and then used as reinforcement. The fabricated composites’ fracture behavior was analyzed through a double cantilever beam test and the energy release rate of the composites was investigated. The neat PAN and functionalized PAN-reinforced samples had an 18% and a 50% increase in fracture energy, respectively, compared to the control composite. In addition, the samples reinforced with functionalized PAN nanofibers had 27% higher interlaminar strength compared to neat PAN-reinforced composite, implying more efficient stress transformation as well as stress distribution from the matrix phase (resin-rich area) to the reinforcement phase (carbon/phase) of the composites. The enhancement of fracture toughness provides an opportunity to alleviate the prevalent issues in laminated composites for structural operations and facilitate their adoption in industries for critical applications.

  • 18.
    Jiang, Lin
    et al.
    School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China.
    Afriyie Mensah, Rhoda
    School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China.
    Asante-Okyere, Solomon
    Department of Petroleum and Natural Gas Engineering, School of Petroleum Studies, University of Mines and Technology, Tarkwa, Ghana.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Xu, Qiang
    School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China.
    Ziggah, Yao Yevenyo
    Department of Geomatic Engineering, Faculty of Mineral Resource Technology, University of Mines and Technology, Tarkwa, Ghana.
    Restás, Ágoston
    Department of Fire Protection and Rescue Control, University of Public Service, Budapest, Hungary.
    Berto, Filippo
    Department of Mechanical Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Developing an artificial intelligent model for predicting combustion and flammability properties2022Inngår i: Fire and Materials, ISSN 0308-0501, E-ISSN 1099-1018, Vol. 46, nr 5, s. 830-842Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    While there have been various attempts in establishing a model that can predict the flammability characteristics of polymers based on their molecular structure, artificial intelligence (AI) presents a promising alternative in tackling this pressing issue. Therefore, a novel approach of adopting AI methods, extreme learning machines (ELMs) and group method of data handling (GMDH) in estimating heat release capacity, total heat release and char yield from thermophysical properties of polymers were addressed. GMDH showed a clear indication of overfitting whereby the models generated excellent training results but could not provide similar performance during testing. The superior generalisation performance of ELM during testing makes it the standout method. ELM produced HRC predictions having R and RRMSE of 0.86 and 0.405 for training, 0.94 and 0.356 for testing. For THR estimates from ELM, the R and RRMSE scores were 0.9 and 0.195 for training, 0.93 and 0.131 for testing. While char yield ELM model generated 0.88 and 0.795 for training, 0.93 and 0.383 for testing. The potential of ELM was demonstrated as it estimated the flammability parameters of 105 polymers having little or no empirical test results.

  • 19.
    Karlsson, Björn
    et al.
    Faculty of Civil and Environmental Engineering, University of Iceland.
    Johansson, Nils
    Department of Fire Protection Engineering, Lund University, Sweden.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Sörensen, Lars Schiött
    Department of Civil Engineering, Denmark Technical University, DTU, Denmark.
    Dederichs, Anne Simone
    Department of Civil Engineering, Denmark Technical University, DTU, Denmark.
    Nordic Course Development Cooperation in an Emerging Field of Engineering2022Inngår i: Proceedings of the 18th CDIO International Conference / [ed] Maria Sigridur Gudjonsdottir; Haraldur Audunsson; Arkaitz Manterola Donoso; Gudmundur Kristjansson; Ingunn Saemundsdóttir; Joseph Timothy Foley; Marcel Kyas; Angkee Sripakagorn; Janne Roslöf; Jens Bennedsen; Kristina Edström; Natha Kuptasthien; Reidar Lyng, Reykjavík University , 2022, s. 659-669Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Four decades ago, a specific engineering BSc study program in Fire Safety Engineering was formed at Lund University, Sweden, and several Nordic universities have since included courses on such subjects in their own BSc og MSc programmes. The field of fire safety engineering encompasses topics from a wide range of engineering disciplines, including mathematics, physics, chemistry and advanced engineering courses such as heat transfer, thermodynamics and fluid dynamics. It is not immediately obvious how to balance the need for knowledge from fundamental, applied and specific courses to be taught within the discipline of fire safety engineering. Long standing cooperation across 12 Nordic universities and research institutions has made this distinction clearer and most recently this network secured Nordic funding for three years for a specific cooperation program in education, including PhD exchange programs and the development of a summer school for students of engineering, focusing on fire safety and energy. Specifically, four of these universities, through the authors of this paper, have been cooperating for a number of years within one of the key courses called „Enclosure Fire Dynamics“, the study of how a fire develops in a building and how engineering methods based on classical physics and chemistry can be used to simulate the environment due to fire, allowing engineers and designers to test and compare various possible design solutions regarding building fire safety. This has required careful development of educational material in close cooperation between Nordic universities, following the CDIO principles. The fruitful cooperation has resulted in the production of comprehensive educational material such as textbooks, homework assignments, laboratory instructions and computer labs, to name a few examples of results. Most of the material is free of charge and available on the internet. This paper provides an example of how this has been achieved by a cross-Nordic collaboration on providing and developing educational material in an emerging engineering discipline.

  • 20.
    Khalili, Pooria
    et al.
    Material and Computational Mechanics, Department of Industrial and Materials Science, Chalmers University of Technology, Gothenburg, Sweden.
    Blinzler, Brina
    Material and Computational Mechanics, Department of Industrial and Materials Science, Chalmers University of Technology, Gothenburg, Sweden.
    Kádár, Roland
    Division of Engineering Materials, Department of Industrial and Materials Science, Chalmers University of Technology, Gothenburg, Sweden.
    Bisschop, Roeland
    Division Safety and Transport/Safety/Fire Research, RISE Research Institutes of Sweden, Borås, Sweden.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand. Division Safety and Transport/Safety/Fire Research, RISE Research Institutes of Sweden, Borås, Sweden.
    Blomqvist, Per
    Division Safety and Transport/Safety/Fire Research, RISE Research Institutes of Sweden, Borås, Sweden.
    Flammability, Smoke, Mechanical Behaviours and Morphology of Flame Retarded Natural Fibre/Elium®Composite2019Inngår i: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 12, nr 17, artikkel-id 2648Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The work involves fabrication of natural fibre/Elium® composites using resin infusion technique. The jute fabrics were treated using phosphorus-carbon based flame retardant (FR) agent, a phosphonate solution and graphene nano-platelet (GnP), followed by resin infusion, to produce FR and graphene-based composites. The properties of these composites were compared with those of the Control (jute fabric/Elium®). As obtained from the cone calorimeter and Fourier transform infrared spectroscopy, the peak heat release rate reduced significantly after the FR and GnP treatments of fabrics whereas total smoke release and quantity of carbon monoxide increased with the incorporation of FR. The addition of GnP had almost no effect on carbon monoxide and carbon dioxide yield. Dynamic mechanical analysis demonstrated that coating jute fabrics with GnP particles led to an enhanced glass transition temperature by 14%. Scanning electron microscopy showed fibre pull-out locations in the tensile fracture surface of the laminates after incorporation of both fillers, which resulted in reduced tensile properties.

  • 21.
    Kundu, Chanchal Kumar
    et al.
    Department of Textile Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; National and Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004, People’s Republic of China.
    Li, Zhiwei
    National and Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004, People’s Republic of China.
    Khan, M. Azizur R.
    Department of Chemistry, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Polypyrrole-modified multi-functional coatings for improved electro-conductive, hydrophilic and flame-retardant properties of polyamide 66 textiles2023Inngår i: JCT Research, ISSN 1547-0091, E-ISSN 2168-8028, Vol. 20, nr 4, s. 1223-1234Artikkel i tidsskrift (Fagfellevurdert)
  • 22.
    Li, Ying Zhen
    et al.
    Safety and Transport - Fire and Safety, RISE Research Institutes of Sweden, Borås, Sweden.
    Ingason, Haukur
    Safety and Transport - Fire and Safety, RISE Research Institutes of Sweden, Borås, Sweden.
    Arvidson, Magnus
    Safety and Transport - Fire and Safety, RISE Research Institutes of Sweden, Borås, Sweden.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand. Safety and Transport - Fire and Safety, RISE Research Institutes of Sweden, Borås, Sweden.
    Performance of various water-based fire suppression systems in tunnels with longitudinal ventilation2024Inngår i: Fire safety journal, ISSN 0379-7112, E-ISSN 1873-7226, Vol. 146, artikkel-id 104141Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Low pressure, medium pressure and high pressure water-based fire suppression systems were tested in a medium scale tunnel (scale 1:3). The primary objective was to investigate which of these systems are most effective in the suppression or control of different types of tunnel fires. The default low, medium and high pressure systems refer to full scale water flow rates of 10 mm/min, 6.8 mm/min and 3.7 mm/min, respectively. Some other water densities were also tested to investigate the effects, as well as different ventilation velocities and activation criteria. Several series of fire tests were conducted for different fire scenarios. The fire scenarios considered included idle wood pallet fires, loosely packed wood crib fires, loosely packed wood and plastic crib fires, and pool fires, with or without a top cover on the fuel load. Comparisons of the three default systems based on the three parameters: heat release rate, energy released and possibility of fire spread, show that the performance of the default low pressure system is usually the most effective based on the parameters studied. The default high pressure system usually yields results less effective in comparison to the default low pressure system. The performance of the default medium pressure system usually lies in between them. The high pressure system behaves very differently in comparison to the others, in terms of tunnel ventilation velocity, water density, operating pressure, and the presence of the top cover.

    Fulltekst (pdf)
    fulltext
  • 23.
    Lin, Chia-Feng
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Träteknik.
    Karlsson, Olov
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Träteknik.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Mensah, Rhoda Afriyie
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Mantanis, George I.
    Laboratory of Wood Science and Technology, Department of Forestry, Wood Sciences and Design, University of Thessaly, GR-431 00 Karditsa, Greece.
    Jones, Dennis
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Träteknik. Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Praha 6-Suchdol, CZ-16521 Prague, Czech Republic.
    Antzutkin, Oleg N.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Sandberg, Dick
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Träteknik. Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Praha 6-Suchdol, CZ-16521 Prague, Czech Republic.
    High Leach-Resistant Fire-Retardant Modified Pine Wood (Pinus sylvestris L.) by In Situ Phosphorylation and Carbamylation2023Inngår i: ACS Omega, E-ISSN 2470-1343, Vol. 8, nr 12, s. 11381-11396Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The exterior application of fire-retardant (FR) timber necessitates it to have high durability because of the possibility to be exposed to rainfall. In this study, water-leaching resistance of FR wood has been imparted by grafting phosphate and carbamate groups of the water-soluble FR additives ammonium dihydrogen phosphate (ADP)/urea onto the hydroxyl groups of wood polymers via vacuum-pressure impregnation, followed by drying/heating in hot air. A darker and more reddish wood surface was observed after the modification. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, solid-state 13C cross-polarization magic-angle-spinning nuclear magnetic resonance (13C CP-MAS NMR), and direct-excitation 31P MAS NMR suggested the formation of C–O–P covalent bonds and urethane chemical bridges. Scanning electron microscopy/energy-dispersive X-ray spectrometry suggested the diffusion of ADP/urea into the cell wall. The gas evolution analyzed by thermogravimetric analysis coupled with quadrupole mass spectrometry revealed a potential grafting reaction mechanism starting with the thermal decomposition of urea. Thermal behavior showed that the FR-modified wood lowered the main decomposition temperature and promoted the formation of char residues at elevated temperatures. The FR activity was preserved even after an extensive water-leaching test, confirmed by the limiting oxygen index (LOI) and cone calorimetry. The reduction of fire hazards was achieved through the increase of the LOI to above 80%, reduction of 30% of the peak heat release rate (pHRR2), reduction of smoke production, and a longer ignition time. The modulus of elasticity of FR-modified wood increased by 40% without significantly decreasing the modulus of rupture.

    Fulltekst (pdf)
    fulltext
  • 24.
    Lin, Chia-Feng
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Träteknik.
    Karlsson, Olov
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Träteknik.
    Kim, Injeong
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Träteknik.
    Myronycheva, Olena
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Träteknik.
    Mensah, Rhoda Afriyie
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Mantanis, George I.
    Laboratory of Wood Science and Technology, Faculty of Forestry, Wood Sciences and Design, University of Thessaly, GR-431 00 Karditsa, Greece.
    Jones, Dennis
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Träteknik. Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Praha 6-Suchdol, CZ-16521 Prague, Czech Republic.
    Sandberg, Dick
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Träteknik. Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Praha 6-Suchdol, CZ-16521 Prague, Czech Republic.
    Fire Retardancy and Leaching Resistance of Furfurylated Pine Wood (Pinus sylvestris L.) Treated with Guanyl-Urea Phosphate2022Inngår i: Polymers, E-ISSN 2073-4360, Vol. 14, nr 9, artikkel-id 1829Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Guanyl-urea phosphate (GUP) was introduced into furfurylated wood in order to improve fire retardancy. Modified wood was produced via vacuum-pressure impregnation of the GUP–furfuryl alcohol (FA) aqueous solution, which was then polymerized at elevated temperature. The water leaching resistance of the treated wood was tested according to European standard EN 84, while the leached water was analyzed using ultra-performance liquid chromatography (UPLC) and inductively coupled plasma–sector field mass spectrometry (ICP-SFMS). This new type of furfurylated wood was further characterized in the laboratory by evaluating its morphology and elemental composition using optical microscopy and electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM-EDX). The chemical functionality was detected using infrared spectroscopy (FTIR), and the fire resistance was tested using cone calorimetry. The dimensional stability was evaluated in wet–dry soaking cycle tests, along with the mechanical properties, such as the Brinell hardness and bending strength. The fire retardancy of the modified furfurylated wood indicated that the flammability of wood can be depressed to some extent by introducing GUP. This was reflected in an observed reduction in heat release rate (HRR2) from 454.8 to 264.9 kW/m2, without a reduction in the material properties. In addition, this leaching-resistant furfurylated wood exhibited higher fire retardancy compared to conventional furfurylated wood. A potential method for producing fire-retardant treated furfurylated wood stable to water exposure has been suggested.

    Fulltekst (pdf)
    fulltext
  • 25.
    Lindström, Johan
    et al.
    SP Fire Research, SP Technical Research Institute of Sweden.
    Försth, Michael
    SP Fire Research, SP Technical Research Institute of Sweden.
    Fire Test of Profile Plank for Transformer Pit Fire Protection2016Inngår i: Fire technology, ISSN 0015-2684, E-ISSN 1572-8099, Vol. 52, nr 2, s. 309-319Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In general it is recommended to fill a transformer pit with rock ballast to extinguish the fire if there is a leakage of burning transformer oil. There is a lack of technology-neutral performance requirements for the design of solutions for fire extinguishment in transformer pit fires. This hampers the introduction of alternatives to the traditional method of filling the pit with rocks. Therefore we have conducted quantitative tests where temperatures and concentrations of CO, CO2, and O2 were measured at different position in a transformer pit subjected to burning oil simulating an accidental rupture and leakage. The tests were conducted to investigate the extinguishing capacity of one specific alternative solution, i.e. a profile plank layer over the pit. Three tests were performed with 90°C and 140°C pre-heated transformer oil. In the second test, a 19 cm water bed was used to examine the impact of rain water in the pit. The result showed that the profile plank extinguished the flames in a few seconds and that the water level did not have any significant effect on the result. The measurements showed that the temperatures peaked at 600–800°C 50 cm above the profile plank in all tests but dropped to under 100°C in 14–16 s. Furthermore the O2-concentration dropped to 3–5 vol% below the plank, which contributed to the rapid extinction of the burning oil.

  • 26.
    Liu, Dongyun
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Wang, Chao
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Gonzalez, Jaime
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Mensah, Rhoda Afriyie
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Sas, Gabriel
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Elfgren, Lennart
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Tu, Yongming
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand. School of Civil Engineering, Southeast University, Nanjing, 211189, China.
    Correlation between early- and later-age performance indices of early frost-damaged concrete2022Inngår i: IABSE Symposium Prague 2022: Challenges for Existing and Oncoming Structures - Report, International Association for Bridge and Structural Engineering / [ed] František Wald, Pavel Ryjáček, International Association for Bridge and Structural Engineering, 2022, s. 934-941Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Freeze‐thaw cycles can lead to serious damage of early‐age concrete and influence its behaviour at later ages. In this study, the later‐age compressive strength, resistance to chloride penetration and resistance to freeze‐thaw of early frost‐damaged concrete were experimentally studied and the relationship between its early‐ (i.e., strength and resistivity) and later‐age (i.e., strength, chloride ion electric flux and freeze‐thaw durability factor) performance indices were analysed. Results show that the later‐age performance of the concrete subjected to freeze‐thaw cycles at early age was generally worse than that of the control samples, which had not undergone early frost damage. This was especially significant for the concrete subjected to freeze‐thaw cycles before the age of 24 h. The compressive strength after early frost action had a higher linear correlation with the later‐age indices of the concrete than the compressive strength before early frost action. Results also showed that the early‐age resistivity is a good indicator for the later‐age performance of early frost‐damaged concrete if the pre‐curing time before frosting is at least 24 h. 

  • 27.
    Mensah, Rhoda Afriyie
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Edström, David Aronsson
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Lundberg, Oskar
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Shanmugam, Vigneshwaran
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Jiang, Lin
    School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
    Qiang, Xu
    School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Sas, Gabriel
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Hedenqvist, Mikael
    Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 100 44, Sweden.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    The effect of infill density on the fire properties of polylactic acid 3D printed parts: A short communication2022Inngår i: Polymer testing, ISSN 0142-9418, E-ISSN 1873-2348, Vol. 111, artikkel-id 107594Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The use of 3D printing technology for manufacturing construction materials is gaining popularity, however, only a few studies have reported the fire behavior of such parts. In this research, the fire properties of 3D printed polylactide acid (PLA) parts with varying infill densities along with the tensile properties were analysed. The results from the fire tests showed that increasing the infill density increased the fuel load, which sustained combustion. Hence, the peak heat release rate and total heat release increased with an increment in infill density percentage. It was also observed that the increasing infill density had no effect on the flammability rating of the parts due to the constant shell thickness used for all the parts. In addition, the tensile strength and ductility of the parts increased with density as a porous part is more susceptible to failure than a solid homogeneous part.

  • 28.
    Mensah, Rhoda Afriyie
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Shanmugam, Vigneshwaran
    Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India.
    Narayanan, Sreenivasan
    Department of Mechanical Engineering, Adishankara Institute of Engineering and Technology, Kalady Kerala 683574, India.
    Razavi, Seyed Mohammad Javad
    Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
    Ulfberg, Adrian
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Blanksvärd, Thomas
    Skanska Sweden, Warfvinges Väg 25, 11274 Stockholm, Sweden.
    Sayahi, Faez
    Luossavaara-Kiirunavaara Aktiebolag (LKAB), 97437 Luleå, Sweden.
    Simonsson, Peter
    Industriellt Anläggningsbyggande, Broar och Byggnadsverk, LCC, 97187 Luleå, Sweden.
    Reinke, Benjamin
    NovoCarbo GmbH, 56281 Dörth, Germany.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Sas, Gabriel
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Sas, Daria
    Luleå tekniska universitet, Institutionen för ekonomi, teknik, konst och samhälle, Industriell ekonomi.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Biochar-Added Cementitious Materials—A Review on Mechanical, Thermal, and Environmental Properties2021Inngår i: Sustainability, E-ISSN 2071-1050, Vol. 13, nr 16, artikkel-id 9336Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    The enhanced carbon footprint of the construction sector has created the need for CO2 emission control and mitigation. CO2 emissions in the construction sector are influenced by a variety of factors, including raw material preparation, cement production, and, most notably, the construction process. Thus, using biobased constituents in cement could reduce CO2 emissions. However, biobased constituents can degrade and have a negative impact on cement performance. Recently, carbonised biomass known as biochar has been found to be an effective partial replacement for cement. Various studies have reported improved mechanical strength and thermal properties with the inclusion of biochar in concrete. To comprehend the properties of biochar-added cementitious materials, the properties of biochar and their effect on concrete need to be examined. This review provides a critical examination of the mechanical and thermal properties of biochar and biochar-added cementitious materials. The study also covers biochar’s life cycle assessment and economic benefits. Overall, the purpose of this review article is to provide a means for researchers in the relevant field to gain a deeper understanding of the innate properties of biochar imparted into biochar-added cementitious materials for property enhancement and reduction of CO2 emissions.

  • 29.
    Mensah, Rhoda Afriyie
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Shanmugam, Vigneshwaran
    Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India.
    Narayanan, Sreenivasan
    Department of Mechanical Engineering, Adishankara Institute of Engineering and Technology, Kalady, Kerala, 683574, India.
    Renner, Juliana Sally
    School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
    Babu, Karthik
    Department of Mechanical Engineering, Assam Energy Institute Sivasagar, A Center of Rajiv Gandhi Institute of Petroleum Technology, Assam, India.
    Neisiany, Rasoul Esmaeely
    Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, 9617976487, Iran.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Sas, Gabriel
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    A review of sustainable and environment-friendly flame retardants used in plastics2022Inngår i: Polymer testing, ISSN 0142-9418, E-ISSN 1873-2348, Vol. 108, artikkel-id 107511Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The progressive transition from conventional structural designs to lightweight and more complex structures has led to the increase in the quantity of plastic materials in buildings. However, plastics have a major flaw: their low fire performance characterised by shorter ignition times and higher heat release rates. This has necessitated the incorporation of flame retardants (FRs) in plastics. Nevertheless, not all FRs are environmentally safe, hence, there is an urgent need for the development of sustainable biobased FRs that reduce environmental footprints while simultaneously improving the fire performance of plastics. This article addresses the negative connotation of FRs and reviews the most extensively used biobased FRs in plastics, their preparation (synthesis) and mode of application, performance evaluation as well as the leaching of FRs, and environmental fate. Some interesting observations in the review are the reduction of ignition times of plastics by the addition of FRs due to the rapid volatilisation of samples. In addition, the leaching rate of FRs is found to be higher in finer particles (micro and nanoparticles) compared to larger-sized ones and has the potential to dissolve in humic matter hence endangering the lives of humans and animals.

  • 30.
    Mensah, Rhoda Afriyie
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Vennström, Alva
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Shanmugam, Vigneshwaran
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Li, Zhiwei
    National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, China.
    Restas, Agoston
    Department of Fire Protection and Rescue Control, National University of Public Service, Budapest, 1011, Hungary.
    Neisiany, Rasoul Esmaeely
    Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, 9617976487, Iran.
    Sokol, Denis
    Department of Inorganic Chemistry, Vilnius University, Naugarduko 24, Vilnius, LT-03225, Lithuania.
    Misra, Manjusri
    School of Engineering, University of Guelph, Albert A. Thornbrough Building, 80 South Ring Road East, Guelph, ON N1G 2W1, Canada.
    Mohanty, Amar
    School of Engineering, University of Guelph, Albert A. Thornbrough Building, 80 South Ring Road East, Guelph, ON N1G 2W1, Canada.
    Hedenqvist, Mikael
    Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 100 44, Sweden.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Influence of biochar and flame retardant on mechanical, thermal, and flammability properties of wheat gluten composites2022Inngår i: Composites Part C: Open Access, ISSN 2666-6820, Vol. 9, artikkel-id 100332Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The use of environmentally friendly materials such as bio-sourced plastics is being driven by increased awareness of environmental issues caused by synthetic plastics. However, bio-sourced plastics have poor fire behaviour that limits their application. The addition of a flame retardant to these plastics is one effective way to increase the fire resistance property; however, the flame retardant should not interfere with the mechanical performance of the plastic. Most flame retardants act as stress concentration points, reducing tensile strength. Hence, to create a balance between tensile strength and fire resistance, biochar (to conserve strength) and lanosol (to improve fire resistance) were added to wheat gluten bioplastic in various ratios and the optimal ratio was identified. Wheat gluten composites were fabricated using compression moulding at four different concentrations of lanosol (2, 4, 6, and 8 wt.%) and biochar (2, 4, 6, and 8 wt.%). From the test results, the composite with 4 wt.% lanosol and 6 wt.% biochar exhibited a good balance between the mechanical and fire properties; it conserved the strength and improved the fire properties (39 % reduction in peak heat release rate).

  • 31.
    Mensah, Rhoda Afriyie
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Wang, Dong
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Shanmugam, Vigneshwaran
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Sas, Gabriel
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Fire behaviour of biochar-based cementitious composites2024Inngår i: Composites Part C: Open Access, ISSN 2666-6820, Vol. 14, artikkel-id 100471Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The study aimed to test the hypothesis that biochar's unique properties, such as its microporous structure, can enhance concrete's resilience to high temperatures. Despite expectations of reduced crack formation and enhanced fire resistance, the experimental results revealed a limited impact on concrete's fire behaviour. The investigation involved the use of two biochar types, fine and coarse biochar as replacements for cement and aggregates, respectively. Fine biochar exhibited higher water absorption and Young's modulus than coarse biochar, but both resisted ignition at 35 kW/m2 radiative heat flux and had peak heat release rates below 40 kW/m2. Incorporating these biochars at varying weight percentages (10, 15, and 20 wt.%) into concrete led to a gradual decline in compressive and tensile strength due to reduced binding ability with increased biochar content. Exposure to 1000 °C compromised mechanical properties across all the samples. However, the biochar concrete maintained compressive strength (compared to the control) with up to 20 wt.% biochar as a fine aggregate substitute after exposure to 600 °C, and as a cement replacement after exposure to 200 °C. This substitution also yielded a significant reduction in CO2 emissions (50 % reduction as the biochar loading amount doubled) from concrete manufacturing, showcasing biochar's potential for sustainable construction practices. Despite not fully supporting the initial hypothesis, the study demonstrated biochar's viability in reducing carbon footprint while maintaining concrete strength under certain fire conditions.

    Fulltekst (pdf)
    fulltext
  • 32.
    Ochoterena, Raúl
    et al.
    RISE Research Institutes of Sweden.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand. RISE Research Institutes of Sweden.
    The effect of thermochromic coatings of VO2 on the fire performance of windows2018Inngår i: Fire and Materials, ISSN 0308-0501, E-ISSN 1099-1018, Vol. 42, nr 7, s. 873-876Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The effect of thermochromic coatings of vanadium dioxide (VO2) on the fire performance of windows was experimentally tested. Prototypes were subjected to radiant heat and the radiation transmitted through the specimens was measured as a function of time. The results indicate that windows coated with VO2 can reduce radiative heat transfer from fires and thereby also reduce or prevent fire spread. The results clearly show that VO2 coatings on BK7 substrates hinder approximately 30% of the transmission of radiation from fire sources when compared with the performance of uncoated windows. It is expected that VO2 will not be solely implemented for the purpose of increasing fire performance of windows, but it will rather provide a secondary positive effect if such windows are realized for energy‐saving purposes.

  • 33.
    Perroud, Théo
    et al.
    Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm 100 44, Sweden.
    Shanmugam, Vigneshwaran
    Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India.
    Mensah, Rhoda Afriyie
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Jiang, Lin
    School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
    Xu, Qiang
    School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
    Neisiany, Rasoul Esmaeely
    Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, 9617976487, Iran.
    Sas, Gabriel
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Kim, Nam Kyeun
    Centre for Advanced Composite Materials, Mechanical Engineering Department, University of Auckland, 1142, New Zealand.
    Hedenqvist, Mikael S.
    Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm 100 44, Sweden.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Testing bioplastic containing functionalised biochar2022Inngår i: Polymer testing, ISSN 0142-9418, E-ISSN 1873-2348, Vol. 113, artikkel-id 107657Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Although flame retardants are very effective in reducing the fire hazard of polymeric materials, their presence may be detrimental to mechanical strength. Hence, in order to have a holistic improvement of performance properties, a new approach has been developed wherein biochar is used to host a naturally-occurring flame retardant (lanosol). The issue of loss in mechanical strength of a polymer host is alleviated by the use of biochar. Three different doping procedures were investigated, namely, dry mixing, and chemical and thermal-based doping, to integrate lanosol into the biochar pores. The doped biochar was used to develop wheat gluten-based blends. The mechanical and flammability properties of the blends were assessed. It was found that thermal doping was the most effective in introducing significant amounts of lanosol particles inside the biochar pores. The bioplastic containing chemically, and thermally doped biochar had equal tensile strength (5.2 MPa), which was comparable to that of the unmodified material (5.4 MPa). The thermally doped biochar displayed the lowest cone calorimeter peak heat release rate (636 kW m−2) for combustion and the highest apparent activation energy (32.4 kJ mol−1) for decomposition. Thus, for flame retarding protein-based matrices, the use of additives thermally doped into biochar is recommended to both simultaneously improve fire-resistance and conserve mechanical strength.

  • 34.
    Rezvani Ghomi, Erfan
    et al.
    Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore.
    Khosravi, Fatemeh
    Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore.
    Mossayebi, Zahra
    Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore.
    Saedi Ardahaei, Ali
    Department of Polymer Engineering, Faculty of Engineering, Golestan University, P.O. Box 491888369, Gorgan 1575949138, Iran.
    Morshedi Dehaghi, Fatemeh
    Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran 1591634311, Iran.
    Khorasani, Masoud
    Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
    Esmaeely Neisiany, Rasoul
    Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Marani, Atiye
    Baspar Sadaf Nab Sepahan, between 23 and 24 Streets, Mahmoodabad Industrial Town, Isfahan 8161199774, Iran.
    Afriyie Mensah, Rhoda
    School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
    Jiang, Lin
    School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
    Xu, Qiang
    School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Berto, Filippo
    Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology NTNU, S.P. Andersens Veg 3, 7031 Trondheim, Norway.
    Ramakrishna, Seeram
    Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore.
    The Flame Retardancy of Polyethylene Composites: From Fundamental Concepts to Nanocomposites2020Inngår i: Molecules, ISSN 1431-5157, E-ISSN 1420-3049, Vol. 25, nr 21, artikkel-id 5157Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Polyethylene (PE) is one the most used plastics worldwide for a wide range of applications due to its good mechanical and chemical resistance, low density, cost efficiency, ease of processability, non-reactivity, low toxicity, good electric insulation, and good functionality. However, its high flammability and rapid flame spread pose dangers for certain applications. Therefore, different flame-retardant (FR) additives are incorporated into PE to increase its flame retardancy. In this review article, research papers from the past 10 years on the flame retardancy of PE systems are comprehensively reviewed and classified based on the additive sources. The FR additives are classified in well-known FR families, including phosphorous, melamine, nitrogen, inorganic hydroxides, boron, and silicon. The mechanism of fire retardance in each family is pinpointed. In addition to the efficiency of each FR in increasing the flame retardancy, its impact on the mechanical properties of the PE system is also discussed. Most of the FRs can decrease the heat release rate (HRR) of the PE products and simultaneously maintains the mechanical properties in appropriate ratios. Based on the literature, inorganic hydroxide seems to be used more in PE systems compared to other families. Finally, the role of nanotechnology for more efficient FR-PE systems is discussed and recommendations are given on implementing strategies that could help incorporate flame retardancy in the circular economy model.

  • 35.
    Sanned, Ellinor
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Mensah, Rhoda A.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Response to the comments made by Vytenis Babrauskas on “the curious case of the second/end peak in the heat release rate of wood: A cone calorimeter investigation”2023Inngår i: Fire and Materials, ISSN 0308-0501, E-ISSN 1099-1018, Vol. 47, nr 5, s. 735-735Artikkel i tidsskrift (Annet vitenskapelig)
    Fulltekst (pdf)
    fulltext
  • 36.
    Sanned, Ellinor
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Mensah, Rhoda Afriyie
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    The curious case of the second/end peak in the heat release rate of wood: A cone calorimeter investigation2023Inngår i: Fire and Materials, ISSN 0308-0501, E-ISSN 1099-1018, Vol. 47, nr 4, s. 498-513Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The reasons behind the occurrence of a second/end peak heat release rate (PHRR) during wood combustion under radiative heating were determined. Effects of the type of rear material, wood thickness, char progression, and its microstructure, as well as moisture content/transport in spruce wood, were studied. Rear materials used were insulating Kaowool, conducting steel, and the same wood but physically separated from test specimen by aluminium foil. The intensity of the second/end PHRR with Kaowool was almost 50% more than that of the sample with steel. Thus, the second/end peak is governed by the boundary condition defined by the rear material, which determines the heat losses at the rear side of the specimen and consequently the temperature of the specimen. Higher specimen temperature enhances the pyrolysis rate, thereby causing the second/end PHRR. The appearance times and values of the second/end PHRR for 30, 20, and 10 mm wood were 1740 s/78 kWm−2, 685 s/134 kWm−2, and 450 s/160 kWm−2, respectively. Char progressed to the rear of the samples even with a thin (8 mm) conductive steel substrate. Cracks in char grew almost three times wider during the second/end PHRR compared to the sample with no second/end peak. Char cracking had no significance on the time of occurrence of the second/end PHRR but affected the overall heat release. High moisture content reduced the charring rate and delayed the time of occurrence of the second/end PHRR as more water was needed to undergo a phase change, requiring a higher amount of energy.

    Fulltekst (pdf)
    fulltext
  • 37.
    Shanmugam, Vigneshwaran
    et al.
    Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602 105, Tamilnadu, India.
    Afriyie Mensah, Rhoda
    School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Sas, Gabriel
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Restás, Ágoston
    Department of Fire Protection and Rescue Control, National University of Public Service, H-1011 Budapest, Hungary.
    Addy, Cyrus
    School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
    Xu, Qiang
    School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
    Jiang, Lin
    School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
    Esmaeely Neisiany, Rasoul
    Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, 9617976487, Iran.
    Singha, Shuvra
    Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm 100 44, Sweden.
    George, Gejo
    Department of Chemistry, St Berchmans College, Changanachery, Kottayam, Kerala 686101, India.
    E, Tomlal Jose
    Department of Chemistry, St Berchmans College, Changanachery, Kottayam, Kerala 686101, India.
    Berto, Filippo
    Department of Mechanical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway.
    Hedenqvist, Mikael S
    Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm 100 44, Sweden.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Ramakrishna, Seeram
    Center for Nanofibres and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, Singapore 117576, Singapore.
    Circular economy in biocomposite development: State-of-the-art, challenges and emerging trends2021Inngår i: Composites Part C: Open Access, ISSN 2666-6820, Vol. 5, artikkel-id 100138Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Biocomposites being environmentally-friendly alternative to synthetic composites are gaining increasing demand for various applications. Hence, biocomposite development should be integrated within a circular economy (CE) model to ensure a sustainable production that is simultaneously innocuous towards the environment. This review presents an overview of the state-of-the-art technologies for the adoption of the CE concept in biocomposite development. The study outlined the properties, environmental and economic impacts of biocomposites. A critical review of the life-cycle assessment of biocomposite for evaluating greenhouse gas emissions and carbon footprints was conducted. In addition, the opportunities and challenges pertaining to the implementation of CE have been discussed in detail. Recycling and utilisation of bio-based constituents were identified as the critical factors in embracing CE. Therefore, the development of innovative recycling technologies and an enhanced use of novel biocomposite constituents could lead to a reduction in material waste and environmental footprints. This article is one of the first studies to review the circularity of biocomposites in detail that will stimulate further research in enhancing the sustainability of these polymeric materials.

  • 38.
    Shanmugam, Vigneshwaran
    et al.
    Faculty of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
    Babu, Karthik
    Department of Mechanical Engineering, Centurion University of Technology and Management, Sitapur, Odisha, India.
    Garrison, Thomas F.
    Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia.
    Capezza, Antonio J.
    Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Sweden. Department of Plant Breeding, Faculty of Landscape Architecture, Horticulture and Crop Production Science, SLU Swedish University of Agricultural Sciences, Alnarp, Sweden.
    Olsson, Richard T.
    Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Sweden.
    Ramakrishna, Seeram
    Department of Mechanical Engineering, Faculty of Engineering, Center for Nanofibres and Nanotechnology, Singapore, Singapore.
    Hedenqvist, Mikael S.
    Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Sweden.
    Singha, Shuvra
    Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Sweden.
    Bartoli, Mattia
    Department of applied science and technology (DISAT), Politecnico di Torino, Torino, Italy.
    Giorcelli, Mauro
    Department of applied science and technology (DISAT), Politecnico di Torino, Torino, Italy. Department of applied science and technology (DISAT), Istituto Italiano di Tecnologia (IIT), Torino, Italy.
    Sas, Gabriel
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Restás, Ágoston
    Department of Fire Protection and Rescue Control, National University of Public Service, Budapest, Hungary.
    Berto, Filippo
    Filippo Berto, Department of Mechanical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway.
    Potential natural polymer‐based nanofibres for the development of facemasks in countering viral outbreaks2021Inngår i: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 138, nr 27, artikkel-id 50658Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The global coronavirus disease 2019 (COVID‐19) pandemic has rapidly increased the demand for facemasks as a measure to reduce the rapid spread of the pathogen. Throughout the pandemic, some countries such as Italy had a monthly demand of ca. 90 million facemasks. Domestic mask manufacturers are capable of manufacturing 8 million masks each week, although the demand was 40 million per week during March 2020. This dramatic increase has contributed to a spike in the generation of facemask waste. Facemasks are often manufactured with synthetic materials that are non‐biodegradable, and their increased usage and improper disposal are raising environmental concerns. Consequently, there is a strong interest for developing biodegradable facemasks made with for example, renewable nanofibres. A range of natural polymer‐based nanofibres has been studied for their potential to be used in air filter applications. This review article examines potential natural polymer‐based nanofibres along with their filtration and antimicrobial capabilities for developing biodegradable facemask that will promote a cleaner production.

  • 39.
    Shanmugam, Vigneshwaran
    et al.
    Department of Mechanical Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai 602105, India.
    Marimuthu, Uthayakumar
    Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India; Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia.
    Rajendran, Sundarakannan
    Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India.
    Veerasimman, Arumugaprabu
    Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India.
    Mahaboob Basha, Adamkhan
    Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India.
    Bin Abdul Majid, Mohd Shukry
    Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia.
    Esmaeely Neisiany, Rasoul
    Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Sas, Gabriel
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Razavi, Seyed Mohammad Javad
    Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Experimental Investigation of Thrust Force, Delamination and Surface Roughness in Drilling Hybrid Structural Composites2021Inngår i: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 14, nr 16, artikkel-id 4468Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Filled hybrid composites are widely used in various structural applications where machining is critical. Hence, it is essential to understand the performance of the fibre composites’ machining behaviour. As such, a new hybrid structural composite was fabricated with redmud as filler and sisal fibre as reinforcement in polyester matrix. The composite was then tested for its drilling performance. A comprehensive drilling experiment was conducted using Taguchi L27 orthogonal array. The effect of the drill tool point angle, the cutting speed, the feed rate on thrust force, delamination, and burr formation were analysed for producing quality holes. The significance of each parameter was analysed, and the experimental outcomes revealed some important findings in the context of the drilling behaviour of sisal fibre/polyester composites with redmud as a filler. Spindle speed contributed 39% in affecting the thrust force, while the feed rate had the maximum influence of ca. 38% in affecting delamination.

  • 40.
    Shanmugam, Vigneshwaran
    et al.
    Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India.
    Mensah, Rhoda Afriyie
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Babu, Karthik
    Department of Mechanical Engineering, Assam Energy Institute, Sivasagar, A Center of Rajiv Gandhi Institute of Petroleum Technology, Assam 785697, India.
    Gawusu, Sidique
    School of Energy and Power Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China.
    Chanda, Avishek
    Composite Materials and Engineering Center, Washington State University, 2001 East Grimes Way, Pullman, WA 99164, USA.
    Tu, Yongming
    School of Civil Engineering, Southeast University, Nanjing 211189, P. R. China; National Engineering Research Center for Prestressing Technology, Southeast University, Nanjing 211189, P. R. China.
    Neisiany, Rasoul Esmaeely
    Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Sas, Gabriel
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    A Review of the Synthesis, Properties, and Applications of 2D Materials2022Inngår i: Particle & particle systems characterization, ISSN 0934-0866, E-ISSN 1521-4117, Vol. 39, nr 6, artikkel-id 2200031Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    In the modern age of nanotechnology, the discovery of graphene has opened up the way to study and develop of several novel 2D materials. The unique physical and chemical properties of 2D materials have enhanced their research, making them superior to the commercial bulk materials used in various applications. Efforts have been made in the current study to present an overview of the intrinsic properties of these materials. Furthermore, synthesis and applications are also reviewed and discussed. Finally, the future outlook of 2D materials is discussed to enhance the research and performance of these materials, which can result in broader applications benefitting the electrical and electronics industries and society. Intensive research into 2D materials is expected to lead to the discovery of new materials with enhanced properties that will benefit the industry and society at large.

  • 41.
    Shanmugam, Vigneshwaran
    et al.
    Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602 105, Tamilnadu, India.
    Sreenivasan, S.N.
    Department of Mechanical Engineering, Adishankara Institute of Engineering and Technology, Kalady Kerala – 683574, India.
    Mensah, Rhoda Afriyie
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Sas, Gabriel
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Hedenqvist, Mikael S
    Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm 100 44, Sweden.
    Neisiany, Rasoul Esmaeely
    Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, 9617976487, Iran.
    Tu, Yongming
    Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology NTNU, S.P. Andersens Veg 3, Trondheim, 7031, Norway; School of Civil Engineering, Southeast University, Nanjing 211189, China.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    A Review on Combustion and Mechanical Behaviour of Pyrolysis Biochar2022Inngår i: Materials Today Communications, ISSN 2352-4928, Vol. 31, artikkel-id 103629Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Biochar has unique physical and chemical properties, making it a viable and sustainable future generation material for a variety of applications. The applications include power generation, composite production, construction (as a reinforcement), and soil amendment. The inherent good mechanical and combustion (or fire) resistance properties of biochar are attractive, however, there are limited reports, despite its effects on bulk material properties being well-documented. Comprehending these innate properties of biochar is critical for tailoring the mechanical and fire properties of biochar-based materials and structures. Therefore, an attempt has been made in this article to garner and analyse literatures reported on the mechanical and combustion properties of biochar without being integrated with a material or structural system (e.g. composite). Biochar produced at high pyrolysis temperatures (>500 ℃) showed high fire resistance property, because of the absence of the volatile matters and development of strong C-C covalent bonds. The mechanical and combustion properties of biocharcan be controlled by varying the biochar size, porus nature, and pyrolysis temperature. The information presented in this article is crucial and can be used as a guide to develop biochar-based materials and structures for mechanical and fire resistance applications.

  • 42.
    Svensson, Robert
    et al.
    SP Technical Research Institute of Sweden, Borås.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Low emissivity surfaces for improved fire performance2015Inngår i: Fire and Materials 2015, 2-4 Feb 2015, San Francisco, USA: proceedings, Interscience Communications, 2015, s. 464-477Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Radiative heat transfer accounts for around one third of the heat released from fires, and this is the most important mode of heat transfer for example at long distances and from a hot smoke gas layer to lower objects, such as to a floor for example. The possibility for reducing the absorptivity of surfaces in the infrared part of the spectrum has been discussed for several decades, mainly for energy saving purposes. Such surfaces are called low emissivity surfaces, or low emissivity coatings, and much focus has been on the spectral absorptivity up to wavelengths around 2.5 μm, e.g for solar reflective paints. Spectra from fires are distributed to longer wavelengths and this paper concerns the absorptivity for paints and thin coatings over the full spectral range where radiation from fires is important. The correlation between absorptivity and time to ignition in the cone calorimeter is also investigated

  • 43.
    Sykam, Kesavarao
    et al.
    Polymers & Functional Materials Division, Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Sas, Gabriel
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Restás, Ágoston
    Department of Fire Protection and Rescue Control, University of Public Service, H-1011, Budapest, Hungary.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Phytic acid: A bio-based flame retardant for cotton and wool fabrics2021Inngår i: Industrial crops and products (Print), ISSN 0926-6690, E-ISSN 1872-633X, Vol. 164, artikkel-id 113349Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Phytic acid (PA) is one of the widely used flame retardants (FRs) to treat a variety of fabrics owing to its high phosphorus content of ca. 28 wt% (with respect to its molecular weight), abundance, non-toxicity, and biocompatibility. The current review discusses the state-of-the-art of PA-based FRs for natural fabrics such as cotton and wool. The possibilities of making PA and FR-based multi-functional cotton fabrics having antimicrobial, conductive, hydrophobic properties are reported by virtue of the synergistic benefits associated with chitosan, silicon, nitrogen, and boron-based molecules. The factors influencing the FR behaviour as well as the durability of PA-based cotton and wool fabrics are discussed with respect to the concentration of PA, pH of the coating solution, temperature, and preparation methods. Holistically, PA has been proved to be a potential alternative to halogenated FRs to confer fire retardant property to cotton and wool fabrics.

  • 44.
    Tu, Yongming
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand. School of Civil Engineering, Southeast University, 211189 Nanjing, PR China; National Engineering Research Center for Prestressing Technology, Southeast University, 211189 Nanjing, PR China.
    Cao, Jie
    School of Civil Engineering, Southeast University, 211189 Nanjing, PR China.
    Wen, Rongjia
    School of Civil Engineering, Southeast University, 211189 Nanjing, PR China.
    Shi, Pan
    School of Civil Engineering, Southeast University, 211189 Nanjing, PR China.
    Yuan, Lei
    School of Civil Engineering, Southeast University, 211189 Nanjing, PR China.
    Ji, Yuanhui
    School of Chemistry and Chemical Engineering, Southeast University, 211189 Nanjing, PR China.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Sas, Gabriel
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Elfgren, Lennart
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Molecular dynamics simulation study of the transport of pairwise coupled ions confined in C-S-H gel nanopores2022Inngår i: Construction and Building Materials, ISSN 0950-0618, E-ISSN 1879-0526, Vol. 318, artikkel-id 126172Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Ions that penetrate concrete micropores have a significant influence on concrete’s properties. Studying the microscopic interaction mechanisms between ions and concrete materials allows the discovery of factors that significantly affect concrete properties from a new perspective. In this study, molecular dynamics techniques were used to simulate the transport processes of different ionic compounds (Na2SO4, NaCl and NaNO2) in C-S-H gel nanopores in a pairwise coupled way, so that a detailed investigation into how these ions interact with each other and how they affect C-S-H gel could be carried out. It was found that for anions entering the C-S-H gel nanopores, the order of transport rate is SO42->Cl->NO2. Furthermore, the SO4-Na ion pair greatly affects the transport rate of solution due to its strong binding stability. Additionally, this study found that the presence of sulfate ions changed the transport characteristics of nitrite ions, such that nitrite ions aggregated into clusters more easily, thereby disrupting the compatibility between nitrite ions and water molecules. As a result, the presence of sulfate ions reduced the rustproofing effect of nitrite ions.

  • 45.
    Tu, Yongming
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand. Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University, 211189, Nanjing, P.R. China; National Engineering Research Center for Prestressing Technology, Southeast University, 211189, Nanjing, P.R. China.
    Yuan, Lei
    Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University, 211189, Nanjing, P.R. China.
    Liu, Dongyun
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand. Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University, 211189, Nanjing, P.R. China.
    Cao, Jie
    Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University, 211189, Nanjing, P.R. China.
    Ding, Yihui
    Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University, 211189, Nanjing, P.R. China.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Sas, Gabriel
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand. SINTEF Narvik AS, Narvik 8517, Norway.
    Elfgren, Lennart
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Molecular Dynamics Simulations of Chloride and Sulfate Ion Transport in C-S-H gel and γ-FeOOH Nanopores2022Inngår i: JOURNAL OF ADVANCED CONCRETE TECHNOLOGY, ISSN 1346-8014, Vol. 20, nr 12, s. 720-731Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Interactions between Cl-, SO42-and cementitious materials, reinforcement passive films influence the durability of rein-forced concrete structures. Transport of three solutions (NaCl, Na2SO4, mixed) in calcium silicate hydrate (C-S-H) gel, gamma- FeOOH nanopores was investigated using molecular dynamics. Solution transport in gamma-FeOOH nanopores is slower than in C-S-H gel nanopores because of the lesser hydrophilicity of gamma-FeOOH surface. SO42-can form ion clusters to hinder the solution transport and atomic motion, and the ion clusters appear in the solution more frequently than at the interface. Temporary adsorption of Cl-, SO42-on substrate surfaces occurs during transport because of Ca-Cl, Ca-SO4 ionic bonds on the C-S-H surface and Ho (hydroxyl hydrogen atoms)-Cl, Ho-SO4 hydrogen bonds on the gamma-FeOOH surface, and these bonds are influenced by the local structure. Two substrates interact with water, Cl-, SO42-via distinct microscopic mechanisms.

  • 46.
    Wen, Rongjia
    et al.
    Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University, Nanjing, P.R. China.
    Tu, Yongming
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand. Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University, Nanjing, P.R. China; National Engineering Research Center for Prestressing Technology, Southeast University, Nanjing, P.R. China.
    Guo, Tong
    Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University, Nanjing, P.R. China.
    Yu, Qian
    Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University, Nanjing, P.R. China.
    Shi, Pan
    Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University, Nanjing, P.R. China.
    Ji, Yuanhui
    School of Chemistry and Chemical Engineering, Southeast University, Nanjing, P.R. China.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Sas, Gabriel
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand. SINTEF Narvik AS, Narvik, Norway.
    Elfgren, Lennart
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Molecular dynamics study on coupled ion transport in aluminium-doped cement-based materials: Effect of concentration2023Inngår i: Advances in Cement Research, ISSN 0951-7197, E-ISSN 1751-7605, Vol. 35, nr 2, s. 81-95Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The mutual inhibition effect of transport of sulphate and chloride in concrete specimen was determined in a macroscopic experiment. Higher concentration of sulphate has a better inhibition effect on chloride transport and the opposite is also true. In this paper, molecular dynamics (MD) simulation was performed to explore the effect of concentration (0, 0.5, 1.0 mol/L) on the transport of mixed solutions (NaCl and Na2SO4) in the main hydration products of aluminium-doped cement-based materials (i.e., calcium-aluminium-silicate-hydrate (C-A-S-H) gel). Sulphate was found to promote the aggregation of other ions to form ion clusters, which can reduce the effective width of the channel entrance and create a “necking” effect, thus reducing the overall transport rate of the solution. With the increase of NaCl concentration, sulphate ions in the mixed solution can adsorb more Na+ and Cl+ ions, and then form larger ion clusters to block the nanopores. Moreover, with increasing Na2SO4 concentration, higher amount of sulphate ions existing in the solution makes it possible to form more ion clusters. The results can provide a reasonable nanoscale explanation for macroscopic experiment.

  • 47.
    Witkowski, Artur
    et al.
    Centre for Fire and Hazards Science, University of Central Lancashire.
    Girdin, Bertrand
    R2Fire / UMET – UMR CNRS 8207, ENSCL, Avenue Dimitri Mendeleïev – Bât. C7a, CS 90108, 59652 Villeneuve d’Ascq.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och -produktion.
    Hewitt, Fiona
    Centre for Fire and Hazards Science, University of Central Lancashire.
    Fontaine, Geêlle
    R2Fire / UMET – UMR CNRS 8207, ENSCL, Avenue Dimitri Mendeleïev – Bât. C7a, CS 90108, 59652 Villeneuve d’Ascq.
    Duquesne, Sophie
    R2Fire / UMET – UMR CNRS 8207, ENSCL, Avenue Dimitri Mendeleïev – Bât. C7a, CS 90108, 59652 Villeneuve d’Ascq.
    Bourbignot, Serge
    R2Fire / UMET – UMR CNRS 8207, ENSCL, Avenue Dimitri Mendeleïev – Bât. C7a, CS 90108, 59652 Villeneuve d’Ascq.
    Hull, T. Richard
    Centre for Fire and Hazards Science, University of Central Lancashire.
    Development of an Anaerobic Pyrolysis Model for Fire Retardant Cable Sheathing Materials2015Inngår i: Polymer degradation and stability, ISSN 0141-3910, E-ISSN 1873-2321, Vol. 113, s. 208-217Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Wire and cable coverings are potentially a major cause of fire in buildings and other installations. As they need to breach fire walls and are frequently located in vertical ducting, they have significant potential to increase the fire hazard. It is therefore important to understand the ignition and burning characteristics of cables by developing a model capable of predicting their burning behaviour for a range of scenarios. The fire performance of electrical cables is usually dominated by the fire performance of the sheathing materials. The complexity of the problem increases when cable sheathing incorporates fire retardants. One-dimensional pyrolysis models have been constructed for cable sheathing materials, based on milligram-scale and bench-scale test data by comparing the performance of three different software tools (ThermaKin, Comsol Multiphysics and FDS, version 6.0.1). Thermogravimetric analysis and differential scanning calorimetry were conducted on powdered cable coatings to determine the thermal degradation mechanism, the enthalpy of decomposition reactions, and the heat capacities of all apparent species. The emissivity and the in-depth absorption coefficient were determined using reflectance and transmittance measurements, with dispersive and non-dispersive spectrometers and integrating spheres. Bench-scale tests were conducted with a mass loss calorimeter flushed with nitrogen on samples in a horizontal orientation, for comparison with the pyrolysis model of non-flaming decomposition at an external heat flux of 50 kW m-2. The parameters determined through analysis of the milligram-scale data were used to construct a pyrolysis model that predicted the total mass loss from calorimeter tests in anaerobic conditions. A condensed phase pyrolysis model that accurately predicts in-depth temperature profiles of a solid fuel, and the mass flux of volatiles evolved during degradation of the fuel, is an essential component of a comprehensive fire model, which when coupled to a computational fluid dynamics code can be used to predict the burning processes in a fire scenario. Pyrolysis models vary considerably in complexity based on the assumptions incorporated into the development of the model.

  • 48.
    Öhrn, Olina
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Sykam, Kesavarao
    Polymers & Functional Materials Division, Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India.
    Gawusu, Sidique
    Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, United States.
    Mensah, Rhoda Afriyie
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Försth, Michael
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Shanmugam, Vigneshwaran
    Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602 105, Tamilnadu, India.
    Karthik Babu, N. B.
    Department of Mechanical Engineering, Assam Energy, Institute, A Centre of Rajiv Gandhi Institute of Petroleum Technology, Sivasagar 785697, India.
    Sas, Gabriel
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Jiang, Lin
    School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
    Xu, Qiang
    School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
    Restás, Ágoston
    Department of Fire Protection and Rescue Control, National University of Public Service, 1011, Budapest, Hungary.
    Das, Oisik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Surface coated ZnO powder as flame retardant for wood: A short communication2023Inngår i: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 897, artikkel-id 165290Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In the present study, the ability of a coating of zinc oxide (ZnO) powder to improve the fire-safety of wood exposed to radiative heat flux was examined, focusing on the ignition time of the wood. To test ZnO's efficiency on the wood substrate, two different amounts of ZnO (0.5 and 1 g ZnO per dm2) were applied to the wood surface and exposed to radiative heat from a cone calorimeter wherein a pristine piece of wood with no ZnO treatment was taken as control. The experiments were conducted at three different irradiation levels i.e., 20, 35, and 50 kWm−2. The results showed that applying ZnO on the surface of the wood significantly increased the ignition time (TTI). For the three different heat fluxes, using 0.5 g ZnO per dm2 coating on the wood surface increased the TTI by 26–33 %. Furthermore, the application of 1 g of ZnO per dm2 generated a TTI increment of 37–40 %. All three irradiation levels showed similar trends in TTI. The micrographs taken before and after combustion showed no significant disparity in the morphology of ZnO. The agglomerated ZnO particles on the wood surface remained intact after combustion. This study demonstrates a facile method of using ZnO to delay the ignition of wood. This could potentially impart fire-safety to wooden structures/façades in wildland-urban interfaces and elsewhere by reducing flame spread.

    Fulltekst (pdf)
    fulltext
1 - 48 of 48
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf