Ändra sökning
Avgränsa sökresultatet
1 - 11 av 11
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Johansson, Maria
    et al.
    Luleå tekniska universitet, Institutionen för konst, kommunikation och lärande, Pedagogik, språk och Ämnesdidaktik.
    Stepanov, Vladimir D
    Department of Mathematical Analysis and Function Theory, Peoples Friendship University, Moscow.
    Ushakova, Elena P.
    Computing Center, Far Eastern Scientific Center, Russian Academy of Sciences.
    Hardy inequality with three measures on monotone functions2007Rapport (Refereegranskat)
  • 2.
    Johansson, Maria
    et al.
    Luleå tekniska universitet, Institutionen för konst, kommunikation och lärande, Pedagogik, språk och Ämnesdidaktik.
    Stepanov, Vladimir
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Ushakova, Elena
    Hardy inequality with three measures on monotone functions2008Ingår i: Mathematical Inequalities & Applications, ISSN 1331-4343, E-ISSN 1848-9966, Vol. 11, nr 3, s. 393-413Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Characterization of Lvp[0, ∞) - L μq[O, ∞) boundedness of the general Hardy operator (Hsf)(x) =(∫[0,x] fsudλ) 1/s restricted to monotone functions f ≥ 0 for 0 < p.q.s < ∞ with positive Borel σ -finite measures λ, μ and v is obtained.

  • 3.
    Nikolova, Ludmila
    et al.
    Department of Mathematics, University of Sofia, Sofia 1164, boul. J.Bouchier 5, Bulgaria.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Ushakova, Elena
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Wedestig, Anna
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Weighted Hardy and Pólya-Knopp inequalities with variable limits2007Ingår i: Mathematical Inequalities & Applications, ISSN 1331-4343, E-ISSN 1848-9966, Vol. 10, nr 3, s. 547-557Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A new scale of characterizations for the weighted Hardy inequality with variable limits is proved for the case 1 < p ≤ q < ∞. A corresponding scale of characterizations for the (limit) weighted Pólya-Knopp inequality is also derived and discussed.

  • 4.
    Persson, Lars-Erik
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Stepanov, Vladimir D.
    Department of Mathematical Analysis, Russian Peoples' Friendship University.
    Ushakova, Elena P.
    Computing Center, Far Eastern Scientific Center, Russian Academy of Sciences.
    Equivalence of Hardy-type inequalities with general measures on the cones of non-negative respective non-increasing functions2005Rapport (Övrigt vetenskapligt)
  • 5.
    Persson, Lars-Erik
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Stepanov, Vladimir D.
    Department of Mathematical Analysis, Russian Peoples' Friendship University.
    Ushakova, Elena P.
    Computing Center, Far Eastern Scientific Center, Russian Academy of Sciences.
    Equivalence of Hardy-type inequalities with general measures on the cones of non-negative respective non-increasing functions2006Ingår i: Proceedings of the American Mathematical Society, ISSN 0002-9939, E-ISSN 1088-6826, Vol. 134, nr 8, s. 2363-2372Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Some Hardy-type integral inequalities in general measure spaces, where the corresponding Hardy operator is replaced by a more general Volterra type integral operator with kernel k(x,y), are considered. The equivalence of such inequalities on the cones of non-negative respective non-increasing functions are established and applied.

  • 6.
    Persson, Lars-Erik
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Stepanov, Vladimir D.
    Ushakova, Elena P.
    On integral operators with monotone kernels2005Ingår i: Doklady Akademii Nauk, ISSN 0869-5652, Vol. 403, nr 1, s. 11-14Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The conditions are investigated, under which for all Lebesgue measurable functions f(x) greater than or equal 0 on a semi-axis R+:=(0, infinity ) with a constant C greater than or equal 0 independent of f, satisfied is inequality: {0 integral infinity [Kf(x)]qν(x)dx}1/q [less-than or equal to] C{0 integral infinity [f(x)]pu(x)dx}1/p (1) with measurable weighted functions u(x) greater than or equal 0 and ν(x) greater than or equal 0 and integral operator Kf(x):=0 integral infinity k(x,y)f(y)dy, where measurable in R+×R+ kernel k(x,y) greater than or equal 0 is monotone in one or two variables. Such operators can be exemplified with Laplace, Hilbert transforms etc. Further, the comparison theorems for (1)-type inequalities with the similar inequalities on a cone of non-growing functions for certain-type Volterra operators are proved.

  • 7.
    Persson, Lars-Erik
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper. Russian Academy of Sciences, Russian Federation.
    Stepanov, Vladimir D.
    Computational Center, Far East Division, Russian Academy of Sciences, Khabarovsk, 680042, Tikhookeanskaya ul. 153, Russian Federation.
    Ushakova, Elena P.
    Computational Center, Far East Division, Russian Academy of Sciences, Khabarovsk, 680042, Tikhookeanskaya ul. 153, Russian Federation.
    On integral operators with monotone kernels2005Ingår i: Doklady. Mathematics, ISSN 1064-5624, E-ISSN 1531-8362, Vol. 72, nr 1, s. 491-494Artikel i tidskrift (Refereegranskat)
  • 8.
    Persson, Lars-Erik
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Ushakova, Elena
    Some multi-dimensional Hardy type integral inequalities2007Ingår i: Mathematical Inequalities & Applications, ISSN 1331-4343, E-ISSN 1848-9966, Vol. 1, nr 3, s. 301-319Artikel i tidskrift (Refereegranskat)
    Ladda ner fulltext (pdf)
    fulltext
  • 9.
    Ushakova, Elena
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Norm inequalities of Hardy and Pólya-Knopp types2006Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    This PhD thesis consists of an introduction and six papers. All these papers are devoted to Lebesgue norm inequalities with Hardy type integral operators. Three of these papers also deal with so-called Pólya-Knopp type inequalities with geometric mean operators instead of Hardy operators. In the introduction we shortly describe the development and current status of the theory of Hardy type inequalities and put the papers included in this PhD thesis into this frame. The papers are conditionally divided into three parts. The first part consists of three papers, which are devoted to weighted Lebesgue norm inequalities for the Hardy operator with both variable limits of integration. In the first of these papers we characterize this inequality on the cones of non-negative monotone functions with an additional third inner weight function in the definition of the operator. In the second and third papers we find new characterizations for the mentioned inequality and apply the results for characterizing the weighted Lebesgue norm inequality for the corresponding geometric mean operator with both variable limits of integration. The second part consists of two papers, which are connected to operators with monotone kernels. In the first of them we give criteria for boundedness in weighted Lebesgue spaces on the semi-axis of certain integral operators with monotone kernels. In the second one we consider Hardy type inequalities in Lebesgue spaces with general measures for Volterra type integral operators with kernels satisfying some conditions of monotonicity. We establish the equivalence of such inequalities on the cones of non-negative respective non-increasing functions and give some applications. The third part consists of one paper, which is devoted to multi-dimensional Hardy type inequalities. We characterize here some new Hardy type inequalities for operators with Oinarov type kernels and integration over spherical cones in n-dimensional vector space over R. We also obtain some new criteria for a weighted multi-dimensional Hardy inequality (of Sawyer type) to hold with one of two weight functions of product type and give as applications of such results new characterizations of some corresponding n-dimensional weighted Pólya-Knopp inequalities to hold.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 10. Ushakova, Elena
    On the Hardy-type operator with variable limits2006Rapport (Övrigt vetenskapligt)
  • 11.
    Ushakova, Elena
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Some multi-dimensional Hardy-type integral inequalities2006Rapport (Övrigt vetenskapligt)
1 - 11 av 11
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf