Ändra sökning
Avgränsa sökresultatet
1 - 10 av 10
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Broekhuizen, Ico
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Rujner, Hendrik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Roldin, Maria
    DHI Sweden.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Improving hydrological modelling of urban drainage swales through use of soil water content observations2020Ingår i: Journal of Hydrology X, ISSN 2589-9155Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Flow observations alone may not provide sufficient information for calibration of detailed hydrological models of urban drainage swales. Therefore this study investigated the added value of using soil water content (SWC) observations made throughout the swale. This can be done by (1) including SWC in the likelihood function that is used to quantify model performance or (2) by using the SWC observations to set initial conditions in the model. The results show that combining outflow and SWC in the likelihood function is necessary to obtain reliable and precise predictions for both variables, and that this increases the number of parameters that are identifiable from the data. Using SWC observations to set initial model conditions improves model performance and affects the degree to which soil hydraulic parameters are identifiable. Overall, it is concluded that SWC observations may be a valuable complement to outflow observations in the modelling of urbanswales.

  • 2.
    Broekhuizen, Ico
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Rujner, Hendrik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Roldin, Maria
    DHI Sweden AB, Södra Tullgatan 3, 211 40 Malmö, Sweden.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Towards using soil water content observations for calibration of distributed urban drainage models: [Vers l’utilisation d'observations de teneur en eau du sol pour le calage de modèles distribués d’assainissement urbain]2019Ingår i: 10e Conférence internationale L'eau dans la ville: Programme et résumés [Urban water: Programme and abstracts], GRAIE , 2019, s. 124-124Konferensbidrag (Refereegranskat)
    Abstract [en]

    Fully distributed urban drainage models can be used to analyse and predict the behaviour of green urban drainage infrastructure such as swales, but they need to be calibrated for specific study sites. Using only drainage outflow measurements may not provide enough information to do this in an optimal way, so additional types of measurements have to be considered. This study identifies different approaches to including soil water content (SWC) observations in the calibration process and investigates how they affect parameter identifiability and the predictive uncertainty of the calibrated model. This is done using the Generalized Likelihood Uncertainty Estimation methodology applied to a model of a large urban swale. It was found that setting initial conditions based on the SWC measurements improved the fit between observed and simulated SWC, but also reduced the accuracy of the simulated amount of infiltration. Including SWC observations allowed to identify one parameter (saturated moisture content of the swale bottom) that was not identifiable from outflow measurements alone. Including SWC observations in the derivation of predictive uncertainty bounds made those bounds narrower (more precise), but where SWC had been used to set initial conditions the uncertainty bound failed to capture the observations. It is concluded that SWC observations can provide useful information for the calibration of distributed urban drainage models.

  • 3.
    Ekka, Sujit A.
    et al.
    Department of Biological and Agricultural Engineering, North Carolina State University, Box 7625, Raleigh, NC, 27695, USA. Department of Environment-Water Resources, AECOM, 1600 Perimeter Park Dr, Suite 400, Morrisville, NC, 27560, USA.
    Rujner, Hendrik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Blecken, Godecke-Tobias
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Hunt, William F.
    Department of Biological and Agricultural Engineering, North Carolina State University, Box 7625, Raleigh, NC, 27695, USA.
    Next generation swale design for stormwater runoff treatment: A comprehensive approach2021Ingår i: Journal of Environmental Management, ISSN 0301-4797, E-ISSN 1095-8630, Vol. 279, artikel-id 111756Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Swales are the oldest and most common stormwater control measure for conveying and treating roadway runoff worldwide. Swales are also gaining popularity as part of stormwater treatment trains and as crucial elements in green infrastructure to build more resilient cities. To achieve higher pollutant reductions, swale alternatives with engineered media (bioswales) and wetland conditions (wet swales) are being tested. However, the available swale design guidance is primarily focused on hydraulic conveyance, overlooking their function as an important water quality treatment tool. The objective of this article is to provide science-based swale design guidance for treating targeted pollutants in stormwater runoff. This guidance is underpinned by a literature review.

    The results of this review suggest that well-maintained grass swales with check dams or infiltration swales are the best options for runoff volume reduction and removal of sediment and heavy metals. For nitrogen removal, wet swales are the most effective swale alternative. Bioswales are best for phosphorus and bacteria removal; both wet swales and bioswales can also treat heavy metals. Selection of a swale type depends on the site constraints, local climate, and available funding for design, construction, and operation. Appropriate siting, pre-design site investigations, and consideration of future maintenance during design are critical to successful long-term swale performance. Swale design recommendations based on a synthesis of the available research are provided, but actual design standards should be developed using local empirical data. Future research is necessary to identify optimal design parameters for all swale types, especially for wet swales.

  • 4.
    Rujner, Hendrik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Green Urban Drainage Infrastructure: Hydrology and Modelling of Grass Swales2018Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [sv]

    Urban dagvattenhantering har utvecklats parallellt med en ökad förståelse för dagvattnets allmänna miljöpåver­kan. Utöver ytvattenkvalitén i recipientvatten påverkas även den hydrologiska regimen genom reducerad infilt­rationsförmåga i mark orsakad av allt tätare ytskikt samt reducerad evapotranspiration orsakad av minskad vegetationsutbredning. Detta ger både förhöjda toppflöden och avrinningsvolymer, vilket kan resultera i över­svämning och slutligen en försämrad ytvattenkvalité i recipienterna. Dagens urbana dagvattensystem förändras mot en högre grad av grön infrastruktur som en central systemkomponent. Decentraliserad omhändertagning av dagvatten såsom svackdiken utjämnar och för bort dagvattensflöden, samtidigt som de fungerar tillförlitligt och deras underhållsåtgärder är välkända. Uppbyggda med små svackor och låglutande slänter samlar svackdiken in och infiltrerar dagvatten från parkeringsytor och vägar. Dessa svackdikens hydrologiska funktion bestäms av en rad faktorer, utöver teknisk dimensionering och avrinningsområdets storlek och hydrologi, även av hydraulik och jordartsrelaterad hydrologi som förändras beroende på respektive nederbördstillfälles intensitet och varak­tighet. Eftersom svackdikens utflöde passerar nedströms liggande dagvattentekniker/anordningar, antingen konventionella ledningssystem eller andra teknologier, krävs full förståelse och kunskap om de faktorer som styr svackdikens hydraulik och hydrologi.

    Mot denna bakgrund fokuserar avhandlingen på frågorna (i) vilka skillnader finns med avseende på hydraulisk och hydrologisk prestanda för de studerade svackdiken, (ii) i vilken mån påverkar markartsförhållanden, inklu­sive ingående markfuktighet, svackdikens vattenbalans vid varierande hydraulisk belastning; samt (iii) hur och i vilken mån kan ovanstående simuleras högupplöst och förutsägbart, via den rutnätsbaserade distribuerade mo­dellen Mike SHE. Därför har fullskaliga studier bedrivits i två 30 m långa svackdiken i Luleå kommuns södra stadsområde, där hydrauliska och hydrologiska data insamlats baserat på standardiserade nederbördsförlopp, återskapande blockregn med 2 månaders och 3 års återkomsttid. Data för avrinning och markfukthalter använ­des för att beräkna svackdikenas vattenbalans, nederbördförloppens hydrografer samt erhålla kalibrering- och valideringsdata för modellsimuleringar. Resultaten från experimenten visade att den volymetriska flödesre­duktionen minskade relativt sett med ökande markfukthalt, indikerande en övergång för svackdikets domine­rande funktionalitet: vid låga initiala SWC var avrinningen tydligt dämpad (upp till 74%), medan för höga SWC innebar att transportfunktionen dominerade (med dämpningsgrad ner mot 17%). Avrinnande momentana topp­flöden reducerades proportionellt mot volymreduktionen. Laggtiden för svackdikets utflödeshydrograf varierade mellan 5 och 15 minuter och reducerades med ökande markfukthalt. Fuktförhållandena i svackdiket påverkade avrinningsförloppet, flödesdämpning och efterföljande utsläpp, och enbart svackdikets översta markskikt berör­des under de kortvariga bevattningscyklerna. I de tre testade svackdikena varierade jordart, initial markfukthalt, mättad hydraulisk konduktivitet och topografi signifikant. Mätningar med dubbelrings infiltrometrar gav föl­jande resultat, 1.78, 4.04 samt 9.41 cm/h (n=9), vilket avvek från medelvärdesbaserat estimat från spatialt inte­grerade infiltrationshastigheter. Med avseende på spatial variabilitet påverkade endast svackdikenas topografi, i form av ojämnheter i och nära dikesbotten, avrinningsförloppen och bortledning under den inledande fasen av regnhändelsen. Sammantaget med uppskattningar av den lagrat vatten i marklagrets toppskikt, bedöms 4-32% av svackdikets ytavrinning från ett simulerade nederbördtillfälle med 2 månaders återkomststid kunna lagras tillfälligt. Mike SHE befanns kapabel att med god noggrannhet kunna reproducera naturbundna dräneringsför­lopp och flöden i svackdiken, förutsatt tillbörlig kalibrering. God överensstämmelse (NSE>0.8) framkom inte bara mellan uppmätta och simulerade utgående hydrografer, utan också beträffande ändring av markfukthalt i ytligt marklager med snabb höjning av fukthalt upp emot full vattenmättnad. Däremot framkom endast mindre (eller total frånvaro av) överensstämmelse vad gäller markdjup av 0.2 m. Modellens output uppvisade låg käns­lighet för ursprunglig markfukthalt, speciellt gällande lågt flöde vilket resulterade i större residualer för simule­rade toppflöden och avrinningsvolymer. För fältförsöken framkom att den initiala markfukthaltens spatiala variabilitet inte påverkade utflödet från svackdiket – i motsats till noggrannheten i dikets topografiska repre­sentation. Denna uppsats belyser samband och följdverkningar beträffande påverkan från undersökta parametrar på en modell för flödes- och vattenföring i ett svackdike och framledes framtida design av svackdiken.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Rujner, Hendrik
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Flanagan, Kelsey
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Comparison of spatial interpolation methods for soil moisture in Green Stormwater Infrastructure2021Ingår i: 15th International Conference on Urban Drainage 2021 Delegates Handbook / [ed] David McCarthy, 2021, s. 598-600, artikel-id 188Konferensbidrag (Refereegranskat)
    Abstract [en]

    Knowledge about soil-physical variables of Green Stormwater Infrastructure (GSI) like soil moisture (θ) is essential to understanding their hydrologic and treatment performance. θ depends on many local factors and is subject to high spatial and temporal variability (Takagi and Lin, 2012; Yao et al. 2013; Nasta et al. 2018). Information about the spatially continuous data of θ can help to understand the hydrologic response and provide an input for initial conditions to improve hydrologic modelling results. A number of deterministic and probabilistic interpolation methods and tools are available today to model the spatial distribution of environmental parameters such as θ (Li and Heap 2011; Yao et al. 2013). The quality of the spatial interpolation, however, depends on sample size, sample distribution and correlation to various other factors, for example terrain profile or vegetation coverage and makes the selection of the appropriate method difficult. Six methods commonly applied to soil characteristics have been selected to interpolate data that has been retrieved from 16 time-domain reflectometers measuring θ in the upper 30 cm of a GSI-site ́s surface. As θ changes at each sampling point also vary over time and therefore change the coefficients of some interpolation methods, estimates were compared for each hour of a 24-hour rainfall event. This is especially relevant as GSI soils are not only subjected to rainfall but also to distinct lateral inflows from impervious areas. Cross-validation and common error calculations were used to assess the statistical performance of the results and identify a method with least errors.

    Ladda ner fulltext (pdf)
    Spatial interpolation soil moisture green stormwater infrastructure
  • 6.
    Rujner, Hendrik
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Goedecke, Manfred
    AG Goedecke & Welsch, Berlin.
    Urban Water Management: Spatial Assessment of the Urban Water Balance2016Ingår i: Sustainable Ho Chi Minh City: Climate Policies for Emerging Mega Cities, Encyclopedia of Global Archaeology/Springer Verlag, 2016, s. 133-150Kapitel i bok, del av antologi (Refereegranskat)
    Abstract [en]

    For fast emerging Asian megacities, knowledge of water resource conditions is indispensable for sustainable water balance management and planning. Urbanisation results in the sealing of surfaces to different degrees in relation to the urban densities and structures developed and ultimately to an alteration of the urban hydrograph. In recent decades urban flooding in Ho Chi Minh City has become one of the most pressing issues. To support the Ho Chi Minh City’s planning authorities, within the frame of this the research project TP. Ho Chi Minh, the rainfall-runoff regime of the southern Vietnamese metropolis of Ho Chi Minh City was investigated. On the basis of high resolution digital databases as well with a previously generated urban structure type map, a German water balance model ABIMO was used to calculate the long-term annual means of individual water balance components for the entire administrative area of the city. Current conditions and further time-series of future urban development scenarios as set out in the draft land use plan up to the year 2020/25 over static climate conditions were modelled. The results were mapped for each of the individual 16,282 land-use blocks of the city’s official land use plan and construed to planning recommendations. The results showed that for the current conditions from a total annual precipitation input of 1573 mm, 117 mm or approximately 7 % is unable to infiltrate or evaporate and converts into surface run-off. Evidence, that urbanization is one of the main cause of increased flooding, could be given by the finding that currently 212 million m3 and based on the simulation for the year 2020/2025 overland flow of 586 million m3 will occur. Finally on the basis of modelled results, a planning recommendation map was compiled displaying zones as planning priorities, targets and measures.

  • 7.
    Rujner, Hendrik
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Flanagan, Kelsey
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Marsalek, Jiri
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Green infrastructure drainage of a commercial plaza without directly connected impervious areas: a case study2022Ingår i: Water Science and Technology, ISSN 0273-1223, E-ISSN 1996-9732, Vol. 86, nr 11, s. 2777-2793Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A paired-catchment study of two adjacent commercial areas in northern Sweden, one with Green Infrastructure (GI) storm drainage and the other with a conventional storm sewer system, served to evaluate the hydrological performance of both drainage systems and demonstrate advantages of GI. The GI catchment avoided directly-connected impervious areas by diverting runoff from a parking lot to a cascade of three infiltration features, a fractured rock strip draining onto a sloping infiltration area, followed by a collector swale. Both catchments were monitored over 4 years by measuring rainfall, runoff and, in the vicinity of the swale, soil water content and groundwater levels. For frequent storms, the median GI efficiencies in reducing runoff volumes and peak flows, and extending peak flow lags, were 96, 99 and 60%, respectively, compared to conventional drainage The storm rainfall depth, initial soil water content, increases in intra-event soil water storage and groundwater levels, had statistically significant effects on either runoff volume or peak flow reductions. No effects were found for storm rainfall intensity and duration, antecedent dry days, and initial groundwater levels. The study demonstrated that GI drainage can be successfully applied even in the challenging environment of a subarctic climate.

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Rujner, Hendrik
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Marsalek, Jiri
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Perttu, Anna-Maria
    SENS Sustainable Energy Solutions, 12154 Nacka, Sweden.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    The effects of initial soil moisture conditions on swale flow hydrographs2018Ingår i: Hydrological Processes, ISSN 0885-6087, E-ISSN 1099-1085, Vol. 32, nr 5, s. 644-654Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The effects of soil water content (SWC) on the formation of run‐off in grass swales draining into astorm sewer system were studied in two 30‐m test swales with trapezoidal cross sections. Swale1 was built in a loamy fine‐sand soil, on a slope of 1.5%, and Swale 2 was built in a sandy loam soil,on a slope of 0.7%. In experimental runs, the swales were irrigated with 2 flow rates reproducing run‐off from block rainfalls with intensities approximately corresponding to 2‐month and 3‐year events. Run‐off experiments were conducted for initial SWC (SWCini) ranging from 0.18 to 0.43 m3/m3. For low SWCini, the run‐off volume was greatly reduced by up to 82%, but at highSWCini, the volume reduction was as low as 15%. The relative swale flow volume reductions decreased with increasing SWCini and, for the conditions studied, indicated a transition of the dominating swale functions from run‐off dissipation to conveyance. Run‐off flow peaks were reduced proportionally to the flow volume reductions, in the range from 4% to 55%. The swale outflow hydrograph lag times varied from 5 to 15 min, with the high values corresponding tolow SWCini. Analysis of swale inflow/outflow hydrographs for high SWCini allowed estimations of the saturated hydraulic conductivities as 3.27 and 4.84 cm/hr in Swales 1 and 2, respectively. Such estimates differed from averages (N = 9) of double‐ring infiltrometer measurements (9.41 and 1.78 cm/hr). Irregularities in swale bottom slopes created bottom surface depression storage of 0.35 and 0.61 m3 for Swales 1 and 2, respectively, and functioned similarly as check bermscontributing to run‐off attenuation. The experimental findings offer implications for drainage swale planning and design: (a) SWCini strongly affect swale functioning in run‐off dissipation and conveyance during the early phase of run‐off, which is particularly important for design storms and their antecedent moisture conditions, and (b) concerning the longevity of swale operation, Swale 1 remains fully functional even after almost 60 years of operation, as judged from its attractive appearance, good infiltration rates (3.27 cm/hr), and high flow capacity.

    Ladda ner fulltext (pdf)
    fulltext
  • 9.
    Rujner, Hendrik
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Marsalek, Jiri
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    High-resolution modelling of the grass swale response to runoff inflows with Mike SHE2018Ingår i: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 562, s. 411-422Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The feasibility of simulating the hydrological response of a grass swale to runoff inflows was examined using the hydrological model Mike SHE and the available input data from 12 irrigation events mimicking runoff from block rainfalls. The test swale channel had a trapezoidal cross-section, bottom slope of 1.5%, length of 30 m, and was built in loamy fine sand. The irrigation events consisted in releasing two equal constant inflows to the swale: a concentrated longitudinal flow at the upstream end and a distributed lateral inflow along the swale side slope adjacent to the contributing drainage area. The total inflows approximated runoff from two events with return periods of 2 months and 3 years, respectively, for durations of 30 min. Irrigation experiments were done for two states of the initial soil moisture, dry or wet antecedent moisture conditions (AMC). Mike SHE has been extensively used on catchments of various sizes, but rarely for small stormwater management facilities and their detailed topography investigated in this study. The latter application required high spatial and temporal resolutions, with computational cells of 0.2 × 0.2 m and time steps as short as 0.6 s to avoid computational instabilities. For dominant hydrological processes, the following computational options in Mike SHE were chosen: Soil infiltration – the van Genuchten equation, unsaturated zone flow – the one-dimensional Richards equation, and overland flow – the diffusive wave approximation of the St. Venant equations. For study purposes, the model was calibrated for single events representing one of four combinations of low and high inflows, and dry and wet AMC, and then applied to the remaining 11 events. This was complemented by calibration for two events, representing high inflow on wet AMC and low inflow in dry AMC. The goodness of fit was statistically assessed for observed and simulated peak flows, hydrograph volumes, Nash-Sutcliffe model efficiencies (NSE), and soil water content (SWC) in swale soil layers. The best fit (NSE > 0.8) was obtained for high inflows and wet AMC (i.e., when the primary swale function is flow conveyance); the least fit was noted for low inflows and dry AMC, when the primary swale function is flow attenuation. Furthermore, this observation indicates the overall importance of correct modelling of the soil infiltration. The effects of spatial variation of SWC on the swale discharge hydrograph could not be confirmed from simulation results, but high topographical accuracy was beneficial for reproducing well the locations of the observed water ponding. No significant increases in simulated SWC at 0.3 m or greater depths were noted, which agreed with field observations. Overall, the results indicated that Mike SHE was effective in process-oriented small-scale modelling of grass swale flow hydrographs.

  • 10.
    Rujner, Hendrik
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten. Unit of Environmental Engineering, University of Innsbruck.
    Perttu, Anna-Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Marsalek, Jiri
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Advancing green infrastructure design: Field evaluation of grassed urban drainage swales2016Ingår i: Novatech proceedings 2016, 2016Konferensbidrag (Refereegranskat)
    Abstract [en]

    Grassed drainage swales, which represent common elements of urban green infrastructures, are designed for different soils, flow capacities, dimensions, slopes and vegetation. Their design is often based on local experience rather than technical guidelines, and consequently, the design and performance of grassed swales, with respect to flow capacity and stormwater management objectives may significantly vary from one jurisdiction to another. To improve this situation and reduce design uncertainties, a field study of grassed swales was conducted by assessing their hydrologic performance. A 30-m section of an urban grassed swale in sandy soils, located in the City of Luleå (Northern Sweden), was equipped with a mobile water supply system and instrumented for measuring swale flow characteristics. The water supply system comprised five containers (~ 1 m3 each) providing controlled longitudinal and lateral inflows into the tested swale section. These inflows were selected to mimic stormwater runoff from a typical drainage area. At the first test site, 14 rainfall events of 30- minute duration were simulated and the resulting swale flows and soil moisture conditions were measured. The experimental variables addressed included wet and dry antecedent conditions, and three inflow rates. The preliminary results indicate that the degree of swale inflow attenuation depended on the magnitude of runoff inflow, on the initial soil moisture conditions and that significant volumes of water can be stored and transmitted during the stormwater drainage process.

1 - 10 av 10
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf