Ändra sökning
Avgränsa sökresultatet
12 1 - 50 av 77
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Hansson, Julia
    et al.
    IVL Swedish Environmental Research Institute, Box 530 21, Gothenburg, SE-400 14, Sweden; Department of Mechanics and Maritime Sciences, Maritime Environmental Sciences, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.
    Ahlström, Johan
    RISE Research Institutes of Sweden, Drottning Kristinas väg 26, Stockholm, Gothenburg, SE-114 28, Sweden.
    Furusjö, Erik
    RISE Research Institutes of Sweden, Drottning Kristinas väg 26, Stockholm, Gothenburg, SE-114 28, Sweden.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Nojpanya, Pavinee
    IVL Swedish Environmental Research Institute, Box 530 21, Gothenburg, SE-400 14, Sweden.
    Costs for Reducing GHG Emissions from Road and Air Transport with Biofuels and Electrofuels2023Ingår i: European Biomass Conference and Exhibition (EUBCE) Proceedings / [ed] I. De Bari; N. Scarlat; A. Grassi, ETA-Florence Renewable Energies , 2023, s. 68-372Konferensbidrag (Refereegranskat)
  • 2.
    Li, Fangfang
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Chang, Fei
    Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Zhang, Xiangping
    Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
    Liu, Yanrong
    Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
    Engvall, Klas
    Department of Chemical Engineering and Technology, Chemical Technology, KTH Royal University of Technology, Stockholm 10044, Sweden.
    Ji, Xiaoyan
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Energy, Cost, and Environmental Assessments of Methanol Production via Electrochemical Reduction of CO2 from Biosyngas2023Ingår i: ACS Sustainable Chemistry and Engineering, E-ISSN 2168-0485, Vol. 11, nr 7, s. 2810-2818Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrochemical reduction of CO2 removed from biosyngas into value-added methanol (CH3OH) provides an attractive way to mitigate climate change, realize CO2 utilization, and improve the overall process efficiency of biomass gasification. However, the economic and environmental feasibilities of this technology are still unclear. In this work, economic and environmental assessments for the stand-alone CO2 electrochemical reduction (CO2R) toward CH3OH with ionic liquid as the electrolyte and the integrated process that combined CO2R with biomass gasification were conducted systematically to identify key economic drivers and provide technological indexes to be competitive. The results demonstrated that costs of investment associated with CO2R and electricity are the main contributors to the total production cost (TPC). Integration of CO2R with CO2 capture/purification and biomass gasification could decrease TPC by 28%-66% under the current and future conditions, highlighting the importance of process integration. Energy and environmental assessment revealed that the energy for CO2R dominated the main energy usage and CO2 emissions, and additionally, the energy structure has a great influence on environmental feasibility. All scenarios could provide climate benefits over the conventional coal-to-CH3OH process if renewable sources are used for electricity generation.

    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Wang, Chuan
    et al.
    Swerim AB.
    Nwachukwu, Chinedu M
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Sandberg, Erik
    Swerim AB.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Perspectives of using biomass to reduce fossil CO2 emission in the Swedish steel industry2021Konferensbidrag (Refereegranskat)
  • 4.
    Zetterholm, Jonas
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Mossberg, Johanna
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. RISE Research Institutes of Sweden, Bioeconomy, Gothenburg, Sweden.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
    Evaluating investments in integrated biofuel production - factoring in uncertainty through real options analysis2019Ingår i: ECOS 2019 - Proceedings of the 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems / [ed] Wojciech Stanek; Paweł Gładysz; Sebastian Werle, Wojciech Adamczyk, Silesian University of Technology , 2019, s. 1911-1922Konferensbidrag (Refereegranskat)
    Abstract [en]

    In the endeavour to reduce CO2 emissions from the transport sector, biofuels from forest industry by-products are key. The adaptation of forest-based biorefinery technologies has so far been low which can partly be attributed to uncertainties in the form of policy instability, market prices, and technology costs. These uncertainties in combination with technology learning, which can be expected to reduce future investment costs, could make it favourable to postpone an investment decision. When applying real options theory, it is recognised that there is an opportunity cost associated with the decision to invest, since the option to wait for more favourable market conditions to occur is forfeited. In traditional discounted cash flow analysis, the impact of uncertainty and the value of reducing it (e.g. by waiting), is usually not taken into consideration. This paper uses a real options framework that incorporates the option to postpone an investment to reduce market uncertainties and wait for technology learning to occur. The focus is to investigate how the usage of an investment decision rule based on real options analysis affects technology choice, the economic performance, and when in time it is favourable to invest in pulp mill integrated biofuel production, compared with using a decision rule based on traditional discounted cash flow analysis. As an illustrative case study we examine a pulp mill which has the option, but not the obligation, to invest in either of two different biofuel production technologies that both use the pulp mill by-product black liquor as feedstock: (1) black liquor gasification followed by fuel synthesis, and (2) membrane separation of lignin followed by hydrodeoxygenation. With the usage of the real options framework and the inclusion of the uncertainties regarding future market prices and investment costs, the decision to invest is made later, compared with using traditional cash flow analysis. The usage of real options also reduces the likeliness of a net loss occurring if an investment is made, as well as increases the expected economic returns, showing the added economic value of flexibility in the face of uncertain future conditions.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Mesfun, Sennai
    et al.
    International Institute for Applied Systems Analysis (IIASA), Laxenburg.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Toffolo, Andrea
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lindbergh, Göran
    School of Chemical Science and Engineering, KTH Royal Institute of Technology.
    Lagergren, Carina
    School of Chemical Science and Engineering, KTH, Stockholm.
    Engvall, Klas
    School of Chemical Science and Engineering, KTH, Stockholm.
    Integration of an electrolysis unit for producer gas conditioning in a bio-synthetic natural gas plant2019Ingår i: Journal of energy resources technology, ISSN 0195-0738, E-ISSN 1528-8994, Vol. 141, nr 1, artikel-id 012002Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Producer gas from biomass gasification contains impurities like tars, particles, alkali salts, and sulfur/nitrogen compounds. As a result, a number of process steps are required to condition the producer gas before utilization as a syngas and further upgrading to final chemicals and fuels. Here, we study the concept of using molten carbonate electrolysis cells (MCEC) both to clean and to condition the composition of a raw syngas stream, from biomass gasification, for further upgrading into synthetic natural gas (SNG). A mathematical MCEC model is used to analyze the impact of operational parameters, such as current density, pressure and temperature, on the quality and amount of syngas produced. Internal rate of return (IRR) is evaluated as an economic indicator of the processes considered. Results indicate that, depending on process configuration, the production of SNG can be boosted by approximately 50-60% without the need of an additional carbon source, i.e., for the same biomass input as in standalone operation of the GoBi-Gas plant. Copyright

  • 6.
    Patrizio, Piera
    et al.
    International Institute for Applied Systems Analysis (IIASA).
    Leduc, Sylvain
    International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
    Kraxner, Florian
    Fuss, Sabine
    Kindermann, Georg
    Spokas, Kasparas
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Yowargana, Ping
    Obersteiner, Michael
    Killing two birds with one stone: a negative emissions strategy for a soft landing of the US coal sector2019Ingår i: Bioenergy with Carbon Capture and Storage: Using Natural Resources for Sustainable Development / [ed] José Carlos Magalhães Pires and Ana Luísa Da Cunha Gonçalves, Elsevier, 2019, s. 219-236Kapitel i bok, del av antologi (Refereegranskat)
    Abstract [en]

    In a modeling study, optimizing the transformation of the US coal sector to achieve emissions reductions consistent with the 2°C target, we include all current coal-fired power plants of the US fleet, a large part of which will need to be replaced due to their high age. Coal-fired power plants can either be (1) replaced by higher efficiency coal plants or (2) natural gas plants while units are not yet at the end of their lifetime and can be (3) retrofitted with carbon capture and storage (CCS) or (4) retrofitted to cofire coal and biomass coupled with CCS (BECCS) thereby achieving negative emissions. Our results show that if the 2°C emissions mitigation target should be achieved, the cost-optimal way of doing so is through an early implementation of BECCS. This strategy also helps to address the US Administrations’ concern for coal workers: there is a more gradual phaseout of coal, which allows to retain 40,000 jobs that would be loss due to the fleet retirement for aging. In addition, 22,000 new workers would be permanently employed in the coal sector by the end of midcentury, especially in areas where the deployments of BECCS would start already by 2030. Our modeling results indicate the Great Lakes area and the southeast United States as the greatest winners of this negative emissions strategy. If planned in an integrated and forward-looking way, climate change mitigation can boost employment and competitiveness.

  • 7.
    Carvalho, Lara
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Furusjö, Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. IVL – Swedish Environmental Institute, Stockholm, Sweden.
    Ma, Chunyan
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Ji, Xiaoyan
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
    Hedlund, Jonas
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Grahn, Mattias
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Öhrman, Olov G. W.
    IVL – Swedish Environmental Institute, Stockholm, Sweden;RISE Energy Technology Center AB, Piteå, Sweden.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
    Alkali enhanced biomass gasification with in situ S capture and a novel syngas cleaning: Part 2: Techno-economic analysis2018Ingår i: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 165, nr Part B, s. 471-482Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Previous research has shown that alkali addition has operational advantages in entrained flow biomass gasification and allows for capture of up to 90% of the biomass sulfur in the slag phase. The resultant low-sulfur content syngas can create new possibilities for syngas cleaning processes. The aim was to assess the techno-economic performance of biofuel production via gasification of alkali impregnated biomass using a novel gas cleaning systemcomprised of (i) entrained flow catalytic gasification with in situ sulfur removal, (ii) further sulfur removal using a zinc bed, (iii) tar removal using a carbon filter, and (iv) CO2 reductionwith zeolite membranes, in comparison to the expensive acid gas removal system (Rectisol technology). The results show that alkali impregnation increases methanol productionallowing for selling prices similar to biofuel production from non-impregnated biomass. It was concluded that the methanol production using the novel cleaning system is comparable to the Rectisol technology in terms of energy efficiency, while showing an economic advantagederived from a methanol selling price reduction of 2–6 €/MWh. The results showed a high level of robustness to changes related to prices and operation. Methanol selling prices could be further reduced by choosing low sulfur content feedstocks.

  • 8.
    Furusjö, Erik
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. IVL Swedish Environmental Research Institute, Climate & Sustainable Cities.
    Ma, Chunyan
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Ji, Xiaoyan
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Carvalho, Lara
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Alkali enhanced biomass gasification with in situ S capture and novel syngas cleaning: Part 1: Gasifier performance2018Ingår i: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 157, s. 96-105Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Previous research shows that alkali addition in entrained flow biomass gasification can increase char conversion and decrease tar and soot formation through catalysis. This paper investigates two other potential benefits of alkali addition: increased slag flowability and in situ sulfur capture.

    Thermodynamic equilibrium calculations show that addition of 2–8% alkali catalyst to biomass completely changes the chemical domain of the gasifier slag phase to an alkali carbonate melt with low viscosity. This can increase feedstock flexibility and improve the operability of an entrained flow biomass gasification process. The alkali carbonate melt also leads to up to 90% sulfur capture through the formation of alkali sulfides. The resulting reduced syngas sulfur content can potentially simplify gas cleaning required for catalytic biofuel production.

    Alkali catalyst recovery and recycling is a precondition for the economic feasibility of the proposed process and is effected through a wet quench. It is shown that the addition of Zn for sulfur precipitation in the alkali recovery loop enables the separation of S, Ca and Mg from the recycle. For high Si and Cl biomass feedstocks, an alternative separation technology for these elements may be required to avoid build-up.

  • 9.
    Svanberg, Martin
    et al.
    SSPA SWEDEN AB.
    Finnsgård, Christian
    SSPA SWEDEN AB.
    Flodén, Jonas
    Department of Business Administration, School of Business, Economics and Law, University of Gothenburg.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Analyzing animal waste-to-energy supply chains: The case of horse manure2018Ingår i: Renewable energy, ISSN 0960-1481, E-ISSN 1879-0682, Vol. 129B, s. 830-837Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    To reduce human impact upon the environment, a transition from fossil to renewable energy sources such as biomass is imperative. Biomass from animal waste such as horse manure has unutilized potential as it has yet to be implemented at a large scale as an energy source. Research has demonstrated the technical feasibility of using animal waste for energy conversion, though their supply chain cost poses a barrier, as does a gap in research regarding the specific design of efficient horse manure-to-energy supply chains. In response, we investigated the design of horse manure-to-energy supply chains through interviews and site visits at stables, as well as through interviews with transport companies. Our findings show that horse manure-to-energy supply chains have distinct attributes at all stages of the supply chain such as the geographical spread of stables that determines supply chain design and hampers efficiency. They share several such attributes with forest biomass-to-energy supply chains, from which important needs can be identified, including the industrial development of trucks dedicated to the purpose, mathematical modeling to handle the trade-off of cost of substance loss in storage and cost of transport, and business models that reconcile the conflicting goals of different actors along the supply chains.

  • 10.
    Zetterholm, Jonas
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
    Pettersson, Karin
    RISE Research Institutes of Sweden, Eklandagatan 86, Göteborg, Sweden.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
    Evaluation of value chain configurations for fast pyrolysis of lignocellulosic biomass: Integration, feedstock, and product choice2018Ingår i: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 144, s. 564-575Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Fast pyrolysis of lignocellulosic biomass constitutes a promising technology to reduce dependence on fossil fuels. The product, pyrolysis liquids, can either substitute heavy fuel oil directly, or be upgraded via e.g. hydroprocessing to diesel and petrol. This study presents a systematic evaluation of production costs and CO2 mitigation potentials of different fast pyrolysis value chain configurations. The evaluation considers types of localisations, emissions from electricity and hydrogen production, biomass feedstocks, and final products. The resulting production costs were found to be in the range of 36–60 EUR/MWh for crude pyrolysis liquids, and 61–90 EUR/MWh upgraded to diesel and petrol. Industrial integration was found to be favoured. The CO2 mitigation potential for the pyrolysis liquids was in the range of 187–282 t-CO2/GWh biomass. High variations were found when upgraded to diesel and petrol –best-case scenario resulted in a mitigation of 347 t-CO2/GWh biomass, while worst-case scenarios resulted in net CO2 emissions. Favourable policy support, continued technology development, and/or increased fossil fuel prices are required for the technology to be adapted on an industrial scale. It was concluded that integration with existing industrial infrastructure can contribute to cost reductions and thus help enable the transformation of traditional forest industry into biorefineries.

  • 11.
    Lundmark, Robert
    et al.
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Forsell, Nicklas
    International Institute for Applied Systems Analysis.
    Leduc, Sylvain
    International Institute for Applied Systems Analysis.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Ouraich, Ismail
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Pettersson, Karin
    Rise.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Large-scale implementation of biorefineries: New value chains, products and efficient biomass feedstock utilisation2018Rapport (Övrig (populärvetenskap, debatt, mm))
    Ladda ner fulltext (pdf)
    fulltext
  • 12.
    Carvalho, Lara
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Wolf, Jens
    RISE Bioeconomy.
    Furusjö, Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Methanol production via black liquor co-gasification with expanded raw material base: Techno-economic assessment2018Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 225, s. 570-584Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Entrained flow gasification of black liquor combined with downstream-gas-derived synthesis of biofuels in Kraft pulp mills has shown advantages regarding energy efficiency and economic performance when compared to combustion in a recovery boiler. To further increase the operation flexibility and the profitability of the biofuel plant while at the same time increase biofuel production, black liquor can be co-gasified with a secondary feedstock (blend-in feedstock). This work has evaluated the prospects of producing biofuels via co-gasification of black liquor and different blend-in feedstocks (crude glycerol, fermentation residues, pyrolysis liquids) at different blend ratios. Process modelling tools were used, in combination with techno-economic assessment methods. Two methanol grades, crude and grade AA methanol, were investigated. The results showed that the co-gasification concepts resulted in significant increases in methanol production volumes, as well as in improved conversion efficiencies, when compared with black liquor gasification; 5-11 and 4-10 percentage point in terms of cold gas efficiency and methanol conversion efficiency, respectively. The economic analysis showed that required methanol selling prices ranging from 55-101 €/MWh for crude methanol and 58-104 €/MWh for grade AA methanol were obtained for an IRR of 15%. Blend-in led to positive economies-of-scale effects and subsequently decreased required methanol selling prices, in particular for low cost blend-in feedstocks (prices below approximately 20 €/MWh). The co-gasification concepts showed economic competitiveness to other biofuel production routes. When compared with fossil fuels, the resulting crude methanol selling prices were above maritime gas oil prices. Nonetheless, for fossil derived methanol prices higher than 80 €/MWh, crude methanol from co-gasification could be an economically competitive option. Grade AA methanol could also compete with taxed gasoline. Crude glycerol turned out as the most attractive blend-in feedstock, from an economic perspective. When mixed with black liquor in a ratio of 50/50, grade AA methanol could even be cost competitive with untaxed gasoline.

  • 13.
    Patrizio, Piera
    et al.
    Ecosystems Services and Management Program (ESM), International Institute for Applied Systems Analysis (IIASA) School of Business Society and Engineering, Mälardalen University.
    Leduc, Sylvain
    Ecosystems Services and Management Program (ESM), International Institute for Applied Systems Analysis (IIASA).
    Kraxner, Florian
    Ecosystems Services and Management Program (ESM), International Institute for Applied Systems Analysis (IIASA).
    Fuss, Sabine
    Ecosystems Services and Management Program (ESM), International Institute for Applied Systems Analysis (IIASA); Working Group Sustainable Resource Management and Global Change, Mercator Research Institute on Global Commons and Climate Change.
    Kindermann, Georg
    Ecosystems Services and Management Program (ESM), International Institute for Applied Systems Analysis (IIASA).
    Mesfun, Sennai
    Ecosystems Services and Management Program (ESM), International Institute for Applied Systems Analysis (IIASA).
    Spokas, Kasparas
    Ecosystems Services and Management Program (ESM), International Institute for Applied Systems Analysis (IIASA); Department of Civil and Environmental Engineering, Princeton University.
    Mendoza, Alma
    Ecosystems Services and Management Program (ESM), International Institute for Applied Systems Analysis (IIASA).
    Mac Dowell, Niall
    Centre for Environmental Policy, Imperial College London; Centre for Process Systems Engineering, Imperial College London.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. Ecosystems Services and Management Program (ESM), International Institute for Applied Systems Analysis (IIASA).
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. Ecosystems Services and Management Program (ESM), International Institute for Applied Systems Analysis (IIASA).
    Dotzauer, Erik
    School of Business Society and Engineering, Mälardalen University.
    Yowargana, Ping
    Ecosystems Services and Management Program (ESM), International Institute for Applied Systems Analysis (IIASA).
    Obersteiner, Michael
    Ecosystems Services and Management Program (ESM), International Institute for Applied Systems Analysis (IIASA).
    Reducing US Coal Emissions Can Boost Employment2018Ingår i: Joule, E-ISSN 2542-4351, Vol. 2, nr 12, s. 2633-2648Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Concerns have been voiced that implementing climate change mitigation measures could come at the cost of employment, especially in the context of the US coal sector. However, repurposing US coal plants presents an opportunity to address emission mitigation and job creation, if the right technology change is adopted. In this study, the transformation of the US coal sector until 2050 is modeled to achieve ambitious climate targets. Results show that the cost-optimal strategy for meeting 2050 emission reductions consistent with 2°C stabilization pathways is through the early deployment of BECCS and by replacing 50% of aging coal plants with natural gas plants. This strategy addresses the concerns surrounding employment for coal workers by retaining 40,000 jobs, and creating 22,000 additional jobs by mid-century. Climate change mitigation does not have to come at the cost of employment, and policymakers could seek to take advantage of the social co-benefits of mitigation.

  • 14.
    Svanberg, Martin
    et al.
    SSPA SWEDEN AB.
    Ellis, Joanne
    SSPA SWEDEN AB.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Landälv, Ingvar
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Renewable methanol as a fuel for the shipping industry2018Ingår i: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 94, s. 1217-1228Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Maritime shipping is essential in global trade. The shipping industry uses fossil fuel with significant environmental impact as a result and a transition to renewable fuels may be part of the solution to reduce emissions. A fuel transition needs to be understood at all stages of the supply chain, ranging from feedstock to use in ships’ engines. The purpose of this paper is to do a synthesis of literature to provide an overview of main challenges and opportunities along potential supply chains of renewable methanol for maritime shipping, with a focus on bio-methanol. It is shown that renewable methanol is a technically viable option to reduce emissions from shipping and there are no major challenges with potential supply chains. Minor economic barriers that currently exist have the potential to be overcome with strengthening of environmental targets for shipping or if fuel oil prices revert to higher levels as seen previously.

  • 15.
    Zetterholm, Jonas
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Pettersson, Karin
    RISE Research Institutes of Sweden, Eklandagatan 86, SE-412 61 Gothenburg.
    Leduc, Sylvain
    International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg.
    Resource efficiency or economy of scale: Biorefinery supply chain configurations for co-gasification of black liquor and pyrolysis liquids2018Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 230, s. 912-924Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Biorefineries for the production of fuels, chemicals, or materials can be an important contributor to reducing dependence on fossil fuels. The economic performance of the biorefinery supply chain can be increased by, for example, industrial integration to utilise excess heat and products, increasing size to improve economy of scale, and using intermediate upgrading to reduce feedstock transport cost. To enable a large-scale introduction of biorefineries it is important to identify cost efficient supply chain configurations.

    This work investigates a lignocellulosic biorefinery concept integrated with forest industry, focusing on how different economic conditions affect the preferred supply chain configurations. The technology investigated is black liquor gasification, with and without the addition of pyrolysis liquids to increase production capacity. Primarily, it analyses trade-offs between high biomass conversion efficiency and economy of scale effects, as well as the selection of centralised vs. decentralised supply chain configurations.

    The results show the economic advantage for biomass efficient configurations, when the biorefinery investment is benefited from an alternative investment credit due to the replacement of current capital-intensive equipment at the host industry. However, the investment credit received heavily influenced the cost of the biorefinery and clearly illustrates the benefit for industrial integration to reduce the cost of biorefineries. There is a benefit for a decentralised supply chain configuration under very high biomass competition. However, for lower biomass competition, site-specific conditions will impact the favourability of either centralised or decentralised supply chain configurations.

    Ladda ner fulltext (pdf)
    fulltext
  • 16.
    Mesfun, Sennai
    et al.
    Ecosystems Services and Management Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
    Leduc, Sylvain
    Ecosystems Services and Management Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
    Patrizio, Piera
    Ecosystems Services and Management Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. Ecosystems Services and Management Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
    Mendoza-Ponce, Alma
    Ecosystems Services and Management Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
    Lammens, Tijs
    B.T.G. Biomass Technology Group B.V, Enschede, The Netherlands.
    Staritsky, Igor
    Wageningen Environmental Research (WENR), Team Earth Informatics, Wageningen, The Netherlands.
    Elbersen, Berien
    Wageningen Environmental Research (WENR), Team Earth Informatics, Wageningen, The Netherlands.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. Ecosystems Services and Management Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
    Kraxner, Florian
    Ecosystems Services and Management Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
    Spatio-temporal assessment of integrating intermittent electricity in the EU and Western Balkans power sector under ambitious CO2 emission policies2018Ingår i: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 164, s. 676-693Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This work investigates a power dispatch system that aims to supply the power demand of the EU and Western Balkans (EUWB) based on low-carbon generation units, enabled by the expansion of biomass, solar, and wind based electricity. A spatially explicit techno-economic optimization tool simulates the EUWB power sector to explore the dispatch of new renewable electricity capacity on a EUWB scale, under ambitious CO2 emission policies. The results show that utility-scale deployment of renewable electricity is feasible and can contribute about 9–39% of the total generation mix, for a carbon price range of 0–200 €/tCO2and with the existing capacities of the cross-border transmission network. Even without any explicit carbon incentive (carbon price of 0 €/tCO2), more than 35% of the variable power in the most ambitious CO2 mitigation scenario (carbon price of 200 €/tCO2) would be economically feasible to deploy. Spatial assessment of bio-electricity potential (based on forest and agriculture feedstock) showed limited presence in the optimal generation mix (0–6%), marginalizing its effect as baseload. Expansion of the existing cross-border transmission capacities helps even out the variability of solar and wind technologies, but may also result in lower installed RE capacity in favor of state-of-the-art natural gas with relatively low sensitivity to increasing carbon taxes. A sensitivity analysis of the investment cost, even under a low-investment scenario and at the high end of the CO2 price range, showed natural gas remains at around 11% of the total generation, emphasizing how costly it would be to achieve the final percentages toward a 100% renewable system.

  • 17.
    Mesfun, Sennai
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. International Institute for Applied Systems Analysis (IIASA), Laxenburg.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. International Institute for Applied Systems Analysis (IIASA), Laxenburg.
    Toffolo, Andrea
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lindbergh, Göran
    School of Chemical Science and Engineering, KTH Royal Institute of Technology.
    Lagergren, Carina
    School of Chemical Science and Engineering, KTH, Stockholm.
    Engvall, Klas
    School of Chemical Science and Engineering, KTH, Stockholm.
    Integration of an electrolysis unit for producer gas conditioning in a bio-SNG plant2017Ingår i: 30th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2017, International Measurement Confederation (IMEKO) , 2017Konferensbidrag (Refereegranskat)
    Abstract [en]

    Producer gas from biomass gasification contains impurities like tars, particles, alkali salts and sulfur/nitrogen compounds. As a result a number of process steps are required to condition the producer gas before utilization as a syngas and further upgrading to final chemicals and fuels. Here, we study the concept of using molten carbonate electrolysis cells (MCEC) both to clean and to condition the composition of a raw syngas stream, from biomass gasification, for further upgrading into SNG. A mathematical MCEC model is used to analyze the impact of operational parameters, such as current density, pressure and temperature, on the quality and amount of tailored syngas produced. Investment opportunity is evaluated as an economic indicator of the processes considered. Results indicate that the production of SNG can be boosted by approximately 50% without the need of an additional carbon source, i.e. for the same biomass input as in standalone operation of the GoBiGas plant.

  • 18.
    Mesfun, Sennai
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Sanchez, Daniel L.
    Carnegie Institution for Science, Department of Global Ecology.
    Leduc, Sylvain
    International Institute for Applied Systems Analysis (IIASA).
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Biberacher, Markus
    Research Studios Austria (RSA), Studio iSPACE.
    Kraxner, Florian
    International Institute for Applied Systems Analysis (IIASA).
    Power-to-gas and power-to-liquid for managing renewable electricity intermittency in the Alpine Region2017Ingår i: Renewable energy, ISSN 0960-1481, E-ISSN 1879-0682, Vol. 107, s. 361-372Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Large-scale deployment of renewable energy sources (RES) plays a central role in reducing CO2 emissions from energy supply systems, but intermittency from solar and wind technologies presents integration challenges. High temperature co-electrolysis of steam and CO2 in power-to-gas (PtG) and power-to-liquid (PtL) configurations could utilize excess intermittent electricity by converting it into chemical fuels. These can then be directly consumed in other sectors, such as transportation and heating, or used as power storage. Here, we investigate the impact of carbon policy and fossil fuel prices on the economic and engineering potential of PtG and PtL systems as storage for intermittent renewable electricity and as a source of low-carbon heating and transportation energy in the Alpine region. We employ a spatially and temporally explicit optimization approach of RES, PtG, PtL and fossil technologies in the electricity, heating, and transportation sectors, using the BeWhere model. Results indicate that large-scale deployment of PtG and PtL technologies for producing chemical fuels from excess intermittent electricity is feasible, particularly when incentivized by carbon prices. Depending on carbon and fossil fuel price, 0.15−15 million tonnes/year of captured CO2 can be used in the synthesis of the chemical fuels, displacing up to 11% of current fossil fuel use in transportation. By providing a physical link between the electricity, transportation, and heating sectors, PtG and PtL technologies can enable greater integration of RES into the energy supply chain globally.

  • 19.
    Carvalho, Lara
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Furusjö, Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Kirtania, Kawnish
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Anheden, Marie
    Innventia AB.
    Wolf, Jens
    Innventia AB.
    Techno-economic assessment of catalytic gasification of biomass powders for methanol production2017Ingår i: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976, Vol. 237, s. 167-177Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This study evaluated the techno-economic performance and potential benefits of methanol production through catalytic gasification of forest residues and lignin. The results showed that while catalytic gasification enables increased cold gas efficiencies and methanol yields compared to non-catalytic gasification, the additional pre-treatment energy and loss of electricity production result in small or no system efficiency improvements. The resulting required methanol selling prices (90-130 €/MWh) are comparable with production costs for other biofuels. It is concluded that catalytic gasification of forest residues can be an attractive option as it provides operational advantages at production costs comparable to non-catalytic gasification. The addition of lignin would require lignin costs below 25 €/MWh to be economically beneficial.

  • 20.
    Andersson, Jim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Furusjö, Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Landälv, Ingvar
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Co-gasification of black liquor and pyrolysis oil: Evaluation of blend ratios and methanol production capacities2016Ingår i: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 110, s. 240-248Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The main aim of this study is to investigate integrated methanol production via co-gasification of black liquor (BL) and pyrolysis oil (PO), at Swedish pulp mills. The objectives are to evaluate techno-economically different blends ratios for different pulp mill capacities. Furthermore, the future methanol production potential in Sweden and overall system consequences of large-scale implementation of PO/BL co-gasification are also assessed.It is concluded that gasification of pure BL and PO/BL blends up to 50% results in significantly lower production costs than what can be achieved by gasification of unblended PO. Co-gasification with 20–50% oil addition would be the most advantageous solution based on IRR for integrated biofuel plants in small pulp mills (200 kADt/y), whilst pure black liquor gasification (BLG) will be the most advantageous alternative for larger pulp mills. For pulp mill sizes between 300 and 600 kADt/y, it is also concluded that a feasible methanol production can be achieved at a methanol market price below 100 €/MW h, for production capacities ranging between 0.9 and 1.6 TW h/y for pure BLG, and between 1.2 and 6.5 TW h/y for PO/BL co-gasification. This study also shows that by introducing PO/BL co-gasification, fewer pulp mills would need to be converted to biofuel plants than with pure BLG, to meet a certain biofuel demand for a region. Due to the technical as well as organizational complexity of the integration this may prove beneficial, and could also potentially lower the total investment requirement to meet the total biofuel demand in the system. The main conclusion is that PO/BL co-gasification is a technically and economically attractive production route for production biomethanol.

  • 21.
    Zetterholm, Jonas
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Pettersson, Karin
    SP/Energi och bioekonomi/Energi- och miljösystemanalys.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Evaluation of co-gasification of black liquor and pyrolysis liquids from a national systems perspective2016Ingår i: Meeting Sweden's current and future energy challenges, Luleå: Luleå tekniska universitet, 2016, Luleå: Luleå tekniska universitet, 2016Konferensbidrag (Övrigt vetenskapligt)
    Ladda ner fulltext (pdf)
    Abstract
    Ladda ner fulltext (pdf)
    Presentation
  • 22.
    Lundmark, Robert
    et al.
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Ouraich, Ismail
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Bryngemark, Elina
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Zetterholm, Jonas
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Olofsson, Elias
    Nolander, Carl
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Pettersson, Karin
    Chalmers tekniska högskola, Sverige.
    Harvey, Simon
    Chalmers tekniska högskola, Sverige.
    Ahlström, Johan
    Chalmers tekniska högskola.
    Andersson, Stefan
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Projekt: En hållbar omställning av energisystemet mot en ökad andel bioenergi2016Övrigt (Övrig (populärvetenskap, debatt, mm))
    Abstract [en]

    3 PhD projects: Markets and price formulation (LTU, economics); Technologies and value chains (Chalmers) and; Location and industrial change (LTU, energy engineering). The general system perspective has its starting point in the importance of biomass and bioenergy in the transition to a long-run sustainable energy system and to an efficient spatial resource utilization and production with increased value chains. Focus is on biorefineries. A spatial approach will be applied in combination with national energy system modelling in connection with technological development potentials and industrial applications is linked to the feed-stock supply as well as market and policy issues.

  • 23.
    Lundmark, Robert
    et al.
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Ouraich, Ismail
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Nolander, Carl
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Andersson, Stefan
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Olofsson, Elias
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Bryngemark, Elina
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Leduc, Sylvain
    International Institute for Applied Systems Analysis, Österrike.
    Forsell, Nicklas
    International Institute for Applied Systems Analysis, Österrike.
    Kindermann, Georg
    International Institute for Applied Systems Analysis, Österrike.
    Pettersson, Karin
    Chamlers tekniska högskola.
    Projekt: Storskalig utbyggnad av bioraffinaderier: Nya värdekedjor, produkter och effektivt utnyttjande av skoglig biomassa2016Övrigt (Övrig (populärvetenskap, debatt, mm))
    Abstract [sv]

    Utvecklingen av kommersiella bioraffinaderikoncept är av strategisk betydelse för Sveriges utveckling till en biobaserad ekonomi. Bioraffinaderier bidrar till att ersätta fossila med biobaserade råvaror. Dessutom bidrar de till en smartare användning av biomassa, ökat förädlingsvärde samt utvecklingspotentialen av nya bioprodukter. Tekniska potentialer och industriella tillämpningar sammanlänkas med råvaruförsörjning samt marknads-, innovations- och policyaspekter. Projektet är tvärvetenskapligt och omfattar integration av modeller som kan redogöra för samspelet mellan olika sektorer, som inkluderar geografiska variationer av utbud och efterfrågan av skoglig biomassa, och som kan fånga effekterna av förändrade marknadsvillkor och styrmedel. För modellintegrationen kommer verktyg tas fram för att underlätta kommunikation och återkoppling mellan de ingående modellerna. Projektet syftar till att generera ny kunskap och ett modellramverk för avancerade systemanalyser relaterade till (i) den svenska biomassa och dess roll i ett hållbart energisystem och (ii) industriell omvandling av processindustrin i riktning mot ett framtida bioraffinaderi branschen. Genomförandefasen bygger på tre uppgiftsområden.

  • 24.
    Moilanen, Antero
    et al.
    VTT Technical Research Centre of Finland, Espoo.
    Lehtinen, Jere
    VTT Technical Research Centre of Finland, Espoo.
    Kurkela, Minna
    VTT Technical Research Centre of Finland, Espoo.
    Muhola, Mirja
    VTT Technical Research Centre of Finland, Espoo.
    Tuomi, Sanna
    VTT Technical Research Centre of Finland, Espoo.
    Carlsson, Per
    Energy Technology Centre, Piteå.
    Öhman, Marcus
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Güell, Berta Matas
    SINTEF.
    Sandquist, Judit
    SINTEF.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Andersson, Jim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Umeki, Kentaro
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Ma, Charlie
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Kurkela, Esa
    VTT Technical Research Centre of Finland, Espoo.
    Wiinikka, Henrik
    Wang, Liang
    SINTEF.
    Backman, Rainer
    Umeå university, Åbo Akademi, Energy Technology and Thermal Process Chemistry, Umeå University.
    Biomass gasification fundamentals to support the development of BTL in forest industry2015Rapport (Övrigt vetenskapligt)
    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 25.
    Furusjö, Erik
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Kirtania, Kawnish
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Jafri, Yawer
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Bach Oller, Albert
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Umeki, Kentaro
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Landälv, Ingvar
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Gebart, Rikard
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Pettersson, Esbjörn
    SP ETC.
    Co-gasification of pyrolysis oil and black liquor - a new track for production of chemicals and transportation fuels from biomass2015Konferensbidrag (Refereegranskat)
    Abstract [en]

    Pressurized oxygen-blown entrained flow black liquor (BL) gasification, the Chemrec technology, has been demonstrated in a 3 MWth pilot plant in Piteå, Sweden for more than 25,000 h. The plant is owned and operated by Luleå University of Technology since 2013. It is well known that catalytic activity of alkali metals is important for the high reactivity of black liquor, which leads to a highly efficient BL gasification process. The globally available volume of BL is however limited and strongly connected to pulp production. By co-gasifying pyrolysis oil (PO) with BL it is possible to utilize the catalytic activity also for PO conversion to syngas. Adding PO leads to larger feedstock flexibility with the possibility of building larger biofuels plants based on BL gasification technology. This presentation summarizes new results from research activities aimed at developing and assessing the PO/BL co-gasification process. Results from laboratory experiments with PO/BL mixtures show that pyrolysis behavior and char gasification reactivity are similar to pure BL. This means that the decrease in the alkali metal concentration due to the addition of PO in the mixture does not decrease the reactivity. Pure PO is much less reactive. Mixing tests show that the fraction of PO that can be mixed into BL is limited by lignin precipitation as a consequence of PO acidity. Pilot scale PO/BL co-gasification experiments have been executed following design and construction of a new feeding system to allow co-feeding of PO with BL. The results confirm the conclusions from the lab scale study and prove that the co-gasification concept is practically applicable. Process performance of the pilot scale co-gasification process is similar to gasification of BL only with high carbon conversion and clean syngas generation. This indicates that the established BL gasification technology can be used for co-gasification of PO and BL without major modifications.

  • 26.
    Andersson, Jim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Furusjö, Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Landälv, Ingvar
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Co-gasification of pyrolysis oil and black liquor for methanol production2015Ingår i: Fuel, ISSN 0016-2361, E-ISSN 1873-7153, Vol. 158, s. 451-459Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    One alternative to reduce the motor fuel production cost and improve the operational flexibility of a black liquor gasification (BLG) plant is to add pyrolysis oil to the black liquor feed and co-gasify the blend. The objective of this study was to investigate techno-economically the possibility to increase methanol production at a pulp mill via co-gasification of pyrolysis oil and black liquor. Gasifying a blend consisting of 50% pyrolysis oil and 50% black liquor on a wet mass basis increases the methanol production by more than 250%, compared to gasifying the available black liquor only. Co-gasification would add extra revenues per produced unit of methanol (IRR > 15%) compared to methanol from unblended BLG (IRR 13%) and be an attractive investment opportunity when the price for pyrolysis oil is less than 70 €/MW h. The economic evaluation was based on a first plant estimate with no investment credit for the recovery boiler and a methanol product value volumetric equivalent to conventional ethanol, both these conditions will not applicable when the technology has been fully commercialized.

  • 27.
    Pettersson, Karin
    et al.
    Chalmers University of Technology, Department of Energy and Environment, Division of Heat and Power Technology , Chalmers University of Technology.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Athanassiadis, Dimitris
    SLU Swedish University of Agricultural Sciences.
    Lundmark, Robert
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Ehn, Christian
    Innventia AB, SE-114 86 Stockholm, Sweden.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Berglin, Niklas
    Innventia AB, SE-114 86 Stockholm, Sweden.
    Integration of next-generation biofuel production in the Swedish forest industry – A geographically explicit approach2015Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 154, s. 317-332Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The geographic locations of biofuel production facilities should be strategically chosen in order to minimise the total cost of using biofuels. Proximity to biomass resources, possibilities for integration, and distance to biofuel users are aspects that need to be considered. In this paper, the geographically explicit optimisation model BeWhere Sweden was used to investigate the future production of next-generation biofuels from forest biomass in Sweden. A focus was placed on the integration of biofuel production with the existing forest industry, as well as on how different parameters affect biofuel production costs, the choice of technologies and biofuels, and the localisation of new biofuel plants. Six examples of different biofuel routes were considered. A methodology was developed considering detailed, site-specific conditions for potential host industries. The results show that the cost of biomass and the biofuel plant capital cost generally dominate the biofuel cost, but the cost for biomass transportation and biofuel distribution can also have a significant impact. DME produced via black liquor gasification (naturally integrated with chemical pulp mills) and SNG produced via solid biomass gasification (mainly integrated with sawmills), dominate the solutions. The distribution of these technology cases varies depending on a number of parameters, including criteria for sizing biofuel plants, the electricity price, the biofuel distribution cost and the cost of biomass, and is sensitive to changes in these parameters. Generally, plants with low specific investment costs (i.e., high biofuel production) and/or plants with low specific biomass transportation costs occur most frequently in the solutions. Because these properties often vary significantly among biofuel production facilities at different host industry sites of the same type, the results show the advantage of including site-specific data in this type of model.

  • 28.
    Wetterlund, Elisabeth
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Pettersson, Karin
    Chalmers University of Technology, Department of Energy and Environment, Division of Heat and Power Technology , Chalmers University of Technology.
    Lundmark, Robert
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Optimal localisation of next-generation biofuel production integrated in Swedish forest industry2015Konferensbidrag (Övrigt vetenskapligt)
    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 29.
    Mesfun, Sennai
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Grip, Carl-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Toffolo, Andrea
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Kudahettige-Nilsson, Rasika
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Rova, Ulrika
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Black liquor fractionation for biofuels production: A techno-economic assessment2014Ingår i: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976, Vol. 166, s. 508-517Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The hemicelluloses fraction of black liquor is an underutilized resource in many chemical pulp mills. It is possible to extract and separate the lignin and hemicelluloses from the black liquor and use the hemicelluloses for biochemical conversion into biofuels and chemicals. Precipitation of the lignin from the black liquor would consequently decrease the thermal load on the recovery boiler, which is often referred to as a bottleneck for increased pulp production. The objective of this work is to techno-economically evaluate the production of sodium-free lignin as a solid fuel and butanol to be used as fossil gasoline replacement by fractionating black liquor. The hydrolysis and fermentation processes are modeled in Aspen Plus to analyze energy and material balances as well as to evaluate the plant economics. A mathematical model of an existing pulp and paper mill is used to analyze the effects on the energy performance of the mill subprocesses.

  • 30.
    Andersson, Jim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Furusjö, Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Landälv, Ingvar
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Co-gasification of pyrolysis oil and black liquor: Optimal feedstock mix for different raw material cost scenarios2014Konferensbidrag (Refereegranskat)
    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 31.
    Andersson, Jim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Marklund, Magnus
    Energy Technology Centre, Piteå.
    Methanol production via pressurized entrained flow biomass gasification: Techno-economic comparison of integrated vs. stand-alone production2014Ingår i: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 64, s. 256-268Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The main objective with this work was to investigate techno-economically the opportunity for integrated gasification-based biomass-to-methanol production in an existing chemical pulp and paper mill. Three different system configurations using the pressurized entrained flow biomass gasification (PEBG) technology were studied, one stand-alone plant, one where the bark boiler in the mill was replaced by a PEBG unit and one with a co-integration of a black liquor gasifier operated in parallel with a PEBG unit. The cases were analysed in terms of overall energy efficiency (calculated as electricity-equivalents) and process economics. The economics was assessed under the current as well as possible future energy market conditions. An economic policy support was found to be necessary to make the methanol production competitive under all market scenarios. In a future energy market, integrating a PEBG unit to replace the bark boiler was the most beneficial case from an economic point of view. In this case the methanol production cost was reduced in the range of 11–18 Euro per MWh compared to the stand-alone case. The overall plant efficiency increased approximately 7%-units compared to the original operation of the mill and the non-integrated stand-alone case. In the case with co-integration of the two parallel gasifiers, an equal increase of the system efficiency was achieved, but the economic benefit was not as apparent. Under similar conditions as the current market and when methanol was sold to replace fossil gasoline, co-integration of the two parallel gasifiers was the best alternative based on received IRR.

  • 32.
    Andersson, Jim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Techno-economic analysis of ammonia production via integrated biomass gasification2014Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 130, nr S1, s. 484-490Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ammonia (NH3) can be produced by synthesis of nitrogen and hydrogen in the Haber–Bosch process, where the economic challenge is the hydrogen production. Currently, substantial amounts of greenhouse gases are emitted from the ammonia industry since the hydrogen production is almost exclusively based on fossil feedstocks. Hydrogen produced via gasification of lignocellulosic biomass is a more environmentally friendly alternative, but the economic performance is critical. The main objective of this work was to perform a techno-economic evaluation of ammonia production via integrated biomass gasification in an existing pulp and paper mill. The results were compared with a stand-alone production case to find potential technical and economic benefits deriving from the integration. The biomass gasifier and the subsequent NH3 production were modelled using the commercial software Aspen Plus. A process integration model based on Mixed Integer Linear Programming (MILP) was used to analyze the effects on the overall energy system of the pulp mill. Important modelling constraints were to maintain the pulp production and the steam balance of the mill. The results showed that the process economics and energy performance are favourable for the integrated case compared to stand-alone production. The main conclusion was however that a rather high NH3 selling price is required to make both production cases economically feasible.

  • 33.
    Hebenstreit, Babette
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Schnetzinger, R.
    Bioenergy 2020+ GmbH.
    Ohnmacht, R.
    Bioenergy 2020+ GmbH.
    Höftberger, E.
    Bioenergy 2020+ GmbH.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Haslinger, W.
    Bioenergy 2020+ GmbH.
    Toffolo, Andrea
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Techno-economic study of a heat pump enhanced flue gas heat recovery for biomass boilers2014Ingår i: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 71, s. 12-22Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An active condensation system for the heat recovery of biomass boilers is evaluated. The active condensation system utilizes the flue gas enthalpy exiting the boiler by combining a quench and a compression heat pump. The system is modelled by mass and energy balances. This study evaluates the operating costs, primary energy efficiency and greenhouse gas emissions on an Austrian data basis for four test cases. Two pellet boilers (10 kW and 100 kW) and two wood chip boilers (100 kW and 10 MW) are considered. The economic analysis shows a decrease in operating costs between 2% and 13%. Meanwhile the primary energy efficiency is increased by 3–21%. The greenhouse gas emissions in CO2 equivalents are calculated to 15.3–27.9 kg MWh−1 based on an Austrian electricity mix. The payback time is evaluated on a net present value (NPV) method, showing a payback time of 2–12 years for the 10 MW wood chip test case.

  • 34.
    Nilsson, Robert
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Bauer, Fredric
    Chemical Engineering, Lund University.
    Mesfun, Sennai
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Hulteberg, Christian
    Chemical Engineering, Lund University.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Wännström, Sune
    SP Technical Research Institute of Sweden.
    Rova, Ulrika
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Berglund, Kris
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Techno-economics of carbon preserving butanol production using a combined fermentative and catalytic approach2014Ingår i: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976, Vol. 161, s. 263-269Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper presents a novel process for n-butanol production which combines a fermentation consuming carbon dioxide (succinic acid fermentation) with subsequent catalytic reduction steps to add hydrogen to form butanol. Process simulations in Aspen Plus have been the basis for the techno-economic analyses performed. The overall economy for the novel process cannot be justified, as production of succinic acid by fermentation is too costly. Though, succinic acid price is expected to drop drastically in a near future. By fully integrating the succinic acid fermentation with the catalytic conversion the need for costly recovery operations could be reduced. The hybrid process would need 22% less raw material than the butanol fermentation at a succinic acid fermentation yield of 0.7 g/g substrate. Additionally, a carbon dioxide fixation of up to 13 ktonnes could be achieved at a plant with an annual butanol production of 10 ktonnes

  • 35.
    Andersson, Jim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Furusjö, Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Co-gasification of pyrolysis oil and black liquor for methanol production2013Konferensbidrag (Refereegranskat)
    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 36.
    Bauer, Fredric
    et al.
    Lund University.
    Berglund, Kris
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Hulteberg, Christian
    Lund University.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Mesfun, Sennai
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Nilsson, Robert
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Rova, Ulrika
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Kemiteknik.
    Wännström, Sune
    SP Technical Research Institute of Sweden.
    Comparative system analysis of carbon preserving fermentations for biofuels production2013Rapport (Refereegranskat)
    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 37.
    Börjesson, Pål
    et al.
    Lunds universitet.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Ahlgren, Serina
    Sveriges Lantbruksuniversitet.
    Nyström, Ingrid
    f3 och CIT Industriell Energi.
    Dagens och framtidens hållbara biodrivmedel: Underlagsrapport från f3 till utredningen om FossilFri Fordonstrafik2013Rapport (Refereegranskat)
    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 38.
    Hebenstreit, Babette
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Höftberger, Ernst
    Bioenergy 2020+ GmbH.
    Ohnmacht, Ralf
    VOIGT+WIPP Engineers GmbH.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Toffolo, Andrea
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Enhanced flue gas condensation technology: Analysis of a 10 MW demonstration plant2013Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    A study on the application of an active condensation system to a typical Austrian heating plant fed with wood chips is presented. The heating plant consists of two biomass boilers (5MW+3MW). The flue gas of both boilers is mixed and directed to a condensing heat exchanger for heat recovery. The heat gained in the heat recovery system is used for preheating the reflux. A heat pump was integrated to enhance the heat recovery. In this paper the integration of the heat pump is discussed. All parts are modeled to calculate the potential energy gain which is obtained and to assess the usefulness of the application of a heat pump from a thermodynamic point of view. In addition, an economic analysis was carried out to evaluate the payback time for the heat pump using the typical Austrian heat and electricity prices. Finally first measurement results are discussed.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 39.
    Lundgren, Joakim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Ekbom, T.
    Grontmij AB, Energy and Power, Stockholm, 47303, 100 74, Sweden.
    Hulteberg, Christian
    Nordlight AB, Limhamn, 30084, 200 61, Sweden; Lund University, Chemical Engineering, 221 00 Lund, Sweden.
    Larsson, Mikael
    Swerea MEFOS AB, Division Process Metalurgy, 971 25 Luleå, 812, Sweden.
    Grip, Carl-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Nilsson, Leif K.
    SSAB EMEA, 971 88 Luleå, Sweden.
    Tunå, Per
    Lund University, Chemical Engineering, 221 00 Lund, Sweden.
    Methanol production from steel-work off-gases and biomass based synthesis gas2013Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 112, s. 431-439Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Off-gases generated during steelmaking are to a large extent used as fuels in process units within the plant. The surplus gases are commonly supplied to a plant for combined heat and power production. The main objective of this study has been to techno-economically investigate the feasibility of an innovative way of producing methanol from these off-gases, thereby upgrading the economic value of the gases. Cases analyzed have included both off-gases only and mixes with synthesis gas, based on 300 MWth of biomass. The SSAB steel plant in the town of Luleå, Sweden has been used as a basis. The studied biomass gasification technology is based on a fluidized-bed gasification technology, where the production capacity is determined from case to case coupled to the heat production required to satisfy the local district heating demand. Critical factors are the integration of the gases with availability to the synthesis unit, to balance the steam system of the biorefinery and to meet the district heat demand of Luleå. The annual production potential of methanol, the overall energy efficiency, the methanol production cost and the environmental effect have been assessed for each case. Depending on case, in the range of 102,000–287,000 ton of methanol can be produced per year at production costs in the range of 0.80–1.1 EUR per liter petrol equivalent at assumed conditions. The overall energy efficiency of the plant increases in all the cases, up to nearly 14%-units on an annual average, due to a more effective utilization of the off-gases. The main conclusion is that integrating methanol production in a steel plant can be made economically feasible and may result in environmental benefits as well as energy efficiency improvements.

  • 40.
    Wetterlund, Elisabeth
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Pettersson, Karin
    Chalmers University of Technology.
    Lundmark, Robert
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Leduc, Sylvain
    International Institute for Applied System Analysis (IIASA), Laxenburg.
    Mossberg, Johanna
    SP Technical Research Institute of Sweden.
    Torén, Johan
    SP Technical Research Institute of Sweden.
    Hoffstedt, Christian
    Innventia AB, SE-114 86 Stockholm, Sweden.
    von Schenck, Anna
    Innventia AB, SE-114 86 Stockholm, Sweden.
    Berglin, Niklas
    Innventia AB, SE-114 86 Stockholm, Sweden.
    Kindermann, Georg
    International Institute for Applied System Analysis (IIASA), Laxenburg.
    Optimal localisation of next generation biofuel production in Sweden2013Rapport (Refereegranskat)
    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 41.
    Wetterlund, Elisabeth
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Pettersson, Karin
    Chalmers University of Technology.
    Lundmark, Robert
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Athanassiadis, Dimitris
    SLU Swedish University of Agricultural Sciences.
    Mossberg, Johanna
    SP Technical Research Institute of Sweden.
    Torén, Johan
    SP Technical Research Institute of Sweden.
    von Schenck, Anna
    Innventia AB, SE-114 86 Stockholm, Sweden.
    Berglin, Niklas
    Innventia AB, SE-114 86 Stockholm, Sweden.
    Optimal localisation of next generation biofuel production in Sweden - part II2013Rapport (Refereegranskat)
    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 42.
    Wetterlund, Elisabeth
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Pettersson, Karin
    Chalmers University of Technology.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Leduc, Sylvain
    International Institute for Applied System Analysis (IIASA), Laxenburg.
    Hoffstedt, Christian
    Innventia AB, SE-114 86 Stockholm, Sweden.
    Torén, Johan
    SP Technical Research Institute of Sweden.
    Kindermann, Georg
    International Institute for Applied System Analysis (IIASA), Laxenburg.
    Lundmark, Robert
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Samhällsvetenskap.
    Dotzauer, Erik
    Mälardalen University.
    Optimal localisation of second generation biofuel production: the role of process integration in system studies2013Konferensbidrag (Refereegranskat)
    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 43.
    Carvalho, Lara
    et al.
    Bioenergy 2020+ GmbH, Gewerbepark Haag 3, 3250 Wieselburg-Land, Austria.
    Wopienka, Elisabeth
    Bioenergy 2020+ GmbH, Gewerbepark Haag 3, 3250 Wieselburg-Land, Austria.
    Pointner, Christian
    Bioenergy 2020+ GmbH, Gewerbepark Haag 3, 3250 Wieselburg-Land, Austria.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Verma, Vijay Kumar
    Bioenergy 2020+ GmbH, Gewerbepark Haag 3, 3250 Wieselburg-Land, Austria.
    Haslinger, Walter
    Bioenergy 2020+ GmbH, Gewerbepark Haag 3, 3250 Wieselburg-Land, Austria.
    Schmidl, Christoph
    Bioenergy 2020+ GmbH, Gewerbepark Haag 3, 3250 Wieselburg-Land, Austria.
    Performance of a pellet boiler fired with agricultural fuels2013Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 104, s. 286-296Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The increasing demand for woody biomass increases the price of this limited resource, motivating the growing interest in using woody materials of lower quality as well as non-woody biomass fuels for heat production in Europe. The challenges in using non-woody biomass as fuels are related to the variability of the chemical composition and in certain fuel properties that may induce problems during combustion. The objective of this work has been to evaluate the technical and environmental performance of a 15 kW pellet boiler when operated with different pelletized biomass fuels, namely straw (Triticum aestivum), Miscanthus (Miscanthus × giganteus), maize (Zea mays), wheat bran, vineyard pruning (from Vitis vinifera), hay, Sorghum (Sorghum bicolor) and wood (from Picea abies) with 5% rye flour. The gaseous and dust emissions as well as the boiler efficiency were investigated and compared with the legal requirements defined in the FprEN 303-5 (final draft of the European standard 303-5). It was found that the boiler control should be improved to better adapt the combustion conditions to the different properties of the agricultural fuels. Additionally, there is a need for a frequent cleaning of the heat exchangers in boilers operated with agricultural fuels to avoid efficiency drops after short term operation. All the agricultural fuels satisfied the legal requirements defined in the FprEN 303-5, with the exception of dust emissions during combustion of straw and Sorghum. Miscanthus and vineyard pruning were the best fuels tested showing comparable emission values to wood combustion.

  • 44.
    Andersson, Jim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Malek, Laura
    Lund Universitet.
    Hulteberg, Christian
    Lund Universitet.
    Pettersson, Karin
    Chalmers University of Technology.
    Wetterlund, Elisabeth
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    System studies on biofuel production via integrated biomass gasification2013Rapport (Refereegranskat)
    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 45.
    Andersson, Jim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Techno-economic analysis of ammonia production via integrated biomass gasification2013Konferensbidrag (Refereegranskat)
    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 46.
    Mesfun, Sennai
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Grip, Carl-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Toffolo, Andrea
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Rova, Ulrika
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Industriell miljö- och processteknik.
    Techno-economic evaluation of butanol production via black liquor fractionation2013Konferensbidrag (Refereegranskat)
    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 47.
    Sandberg, Johan
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Larsson, Mikael
    Wang, Chuan
    Dahl, Jan
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    A new optimal solution space based method for increased resolution in energy system optimisation2012Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 92, nr 1, s. 583-592Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this paper a new method for increased time resolution in multi-period Mixed Integer Linear Programming (MILP) optimisation is presented and applied to a district heating system. The proposed method facilitates the analysis of many time periods in multi period MILP optimisation projects. In the paper, a 365 time period model spanning 1 year developed with the novel method is compared to a 12 time period model developed with a more conventional methodology. The new method offers a significant decrease in the amount of input data for multi period models and facilitates changes to the analysed time span or resolution in time. In the application of the new method oil savings of 7% compared to the current operational strategy of the district heating system are revealed.

  • 48.
    Lundgren, Joakim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Wallberg, Ola
    Lund Universitet.
    Analysis of Different Research Activities and Description of Parties within the Swedish Knowledge Centre for Renewable Transportation Fuel2012Rapport (Övrig (populärvetenskap, debatt, mm))
  • 49.
    Lundgren, Joakim
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Grip, Carl-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Ekbom, Tomas
    Grontmij AB, Energy and Power, Stockholm.
    Grip, Niklas
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Hulteberg, Christian
    Nordlight AB, Limhamn.
    Larsson, Mikael
    Nilsson, Leif
    SSAB EMEA, Luleå.
    Increased energy efficiency and carbon dioxide - reduction in steel mills: methanol from steel work off-gases2012Rapport (Övrigt vetenskapligt)
    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 50.
    Ekbom, Tomas
    et al.
    Grontmij AB, Energy and Power, Stockholm, Sweden.
    Hulteberg, Christian
    Nordlight AB, Limhamn, Sweden;Lund University, Sweden.
    Grip, Carl-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Larsson, Mikael
    Swerea MEFOS AB, Sweden.
    Lundgren, Joakim
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Nilsson, Leif
    SSAB EMEA, Luleå, Sweden.
    Tunå, Per
    Lund University, Sweden.
    Methanol production from steel-work off-gases and biomass based synthesis gas2012Ingår i: International Conference on Applied Energy, ICAE 2012: Jul 5-8, 2012, Suzhou, China, 2012, artikel-id ICAE2012-A10512Konferensbidrag (Refereegranskat)
    Abstract [en]

    The main objective has been to describe different cases of the methanol production from steel-work off gases (Coke oven gas and Basic oxygen furnace gas) and biomass based synthesis gas. The SSAB steel mill in the town of Luleå, Sweden has been used as a basis to analyze four different methanol production cases.The studied biomass gasification technology is based on a fluidized bed gasifier unit, where the production capacity is determined from case to case coupled to the heat production required to satisfy the local district heating demand. Critical factors are the integration of the gases with availability to the synthesis unit, to balance the steam system of the biorefinery and to meet the district heat demand of Luleå.For each case, the annual production potential of methanol, the overall production efficiencies and the effects on the total steel plant have been estimated.

    Ladda ner fulltext (pdf)
    fulltext
12 1 - 50 av 77
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf