Ändra sökning
Avgränsa sökresultatet
1 - 11 av 11
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Buasiri, Thanyarat
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Kothari, Ankit
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Habermehl-Cwirzen, Karin
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Krzeminski, Lukasz
    The Institute of Engineering Materials and Biomaterials, Silesian University of Technology, 44-100, Gliwice, Poland.
    Cwirzen, Andrzej
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Monitoring temperature and hydration by mortar sensors made of nanomodified Portland cement2024Ingår i: Materials and Structures, ISSN 1359-5997, E-ISSN 1871-6873, Vol. 57, artikel-id 1Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Mortar beams incorporating carbon nanofibers (CNFs), which were synthesized in situ on Portland cement particles, were used to produce nanomodified Portland cement sensors (SmartCem sensors). SmartCem sensors exhibited an electrical response comparable to a thermistor with a temperature coefficient of resistivity of − 0.0152/ °C. The highest temperature sensing was obtained for the SmartCem sensor, which contained ~ 0.271 wt.% of CNFs. The calculated temperature sensitivity was approximately 11.76% higher in comparison with the mortar beam containing only unmodified Portland cement. SmartCem sensors were used to monitor the cement hydration in large-scale self-compacting concrete beams. The measurements were conducted after casting for 7 days. Additionally, commercially available thermocouple and humidity sensors were used as references. The results showed that changes in electrical resistivity measured by the SmartCem sensor were well aligned with the ongoing hydration processes.

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Kothari, Ankit
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Buasiri, Thanyarat
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Cwirzen, Andrzej
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Early Age Performance of OPC-GGBFS-Concretes Containing Belite-CSA Cement Cured at Sub-Zero Temperatures2023Ingår i: Buildings, ISSN 2075-5309, E-ISSN 2075-5309, Vol. 13, nr 9, artikel-id 2374Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This study determined how replacing sodium nitrate-based antifreeze admixture (AF) with belite-calcium sulfoaluminate (belite-CSA) cement affects the early age properties of ecological concretes based on ordinary Portland cement (OPC) and ground granulated blast-furnace slag (GGBFS). Concrete specimens were cured at −15 °C and treated in various ways before testing, i.e., no treatment, stored at 20 °C for 12 and 24 h. Generally, the addition of belite-CSA cement shortened the setting time due to the rapid formation of ettringite. The incorporation of 25 wt% of antifreeze admixture (AF) to the OPC-GGBFS concrete cured at −15 °C partially inhibited ice formation and enabled the continuation of hydration processes. This trend was observed for all samples, independent of the applied AF after freezing curing. On the contrary, the addition of 20 wt% of CSA failed to inhibit the ice formation and increased the risk of frost damage for concretes despite the treatment after freezing. These concrete specimens had lower hydration, lower strength, and a more porous binder matrix. The microstructure of the binder matrix was significantly affected by the amount of CSA and extreme negative curing, followed by no notable recovery post-curing at room temperature. Therefore, pre-curing at room temperature for at least 6 h has the potential to avoid frost damage. Concrete containing 25 wt% AF combined with 12 h and 24 h of curing at 20 °C after removal from freezing and prior to testing could enhance the compressive strengths of all concretes. The renewed hydration was indicated as the main influencing factor.

    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Kothari, Ankit
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Tole, Ilda
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Hedlund, Hans
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand. Skanska Teknik AB, Skanska Sverige AB, 40518 Göteborg, Sweden.
    Ellison, Tommy
    BESAB AB, Technical Manager, Berg & Betong, Tagenevägen 7, 42259 Hisings Backa, Göteborg, Sweden.
    Cwirzen, Andrzej
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Partial replacement of OPC with CSA cements – effects on hydration, fresh-, hardened-properties2023Ingår i: Advances in Cement Research, ISSN 0951-7197, E-ISSN 1751-7605, Vol. 35, nr 5, s. 207-224Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The effects of a partial replacement of Ordinary Portland cement (OPC) with three types of calcium sulfoaluminate (CSA) cements (40 wt% and 20 wt%) were investigated. The obtained results were generally in agreement with previously published data but with few interesting exceptions. Setting times were shortened due to the formation of ettringite. The maximum hydration temperature increased for concretes containing 40 wt% of CSA but decreased when 20 wt% replacement was used. The decrease was related to the deficiency of the available sulfates, which limited the formation of ettringite. The presence of extra anhydrite and calcium oxide was associated to the delayed establishment of the second temperature peak in contrast to OPC-based concretes. Their surplus delayed calcium aluminate and belite reactions, and triggered renewed formation of ettringite, C-S-H and portlandite. Effects of aluminum hydroxide were also indicated as possibly important, although not proved experimentally in this research. The slightly lower compressive strength measured for mixes containing 40 wt% of CSA were linked with more formed ettringite. The same factor was indicated as the key to the reduction of the total shrinkage in mixes containing 40 wt% of CSA and increased for the lower CSA replacement level. In that case, the insufficient amount of formed ettringite caused too small expansion, which could not efficiently mitigate or compensate the developed shrinkage.

  • 4.
    Kothari, Ankit
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Hedlund, Hans
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand. Skanska Teknik AB, Skanska Sverige AB, 40518 Göteborg, Sweden.
    Illikainen, Mirja
    Fiber and Particle Engineering Research Unit, Faculty of Technology, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland.
    Cwirzen, Andrzej
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Effects of sodium nitrate and OPC-GGBS concrete mix composition on phase transition of pore water at subzero temperatures2022Ingår i: Construction and Building Materials, ISSN 0950-0618, E-ISSN 1879-0526, Vol. 327, artikel-id 126901Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Lowering the freezing temperature of the mixing water is crucial for concrete works at subzero temperatures. In this study, formation of ice was examined for various pastes and concretes of OPC-GGBS based, while exposed to a constant temperature of −15 °C. Sodium nitrate antifreeze admixture was added as 0, 6, 10, 15, 20, 25, 30 wt% by the total binder amount. The ice formation and its effects on the binder matrix microstructure was studied using differential scanning calorimetry (DSC), ultrasonic pulse velocity (UPV) and Scanning Electron Microscopy – Energy Dispersive Spectrometry (SEM-EDS). Several curing procedures were applied to samples before commencing tests. Results showed that, addition of 25 wt% of the sodium nitrate caused the most extensive delay of the ice growth. Mixes containing less admixture showed an increasing amount of the forming ice which in some cases lead to the development of the false strength. The hydration rate has been the highest for the mix with 25 wt% of the sodium nitrate and tended to be limited at lower additions. The porosity of the hydrated binder matrix tended to be lower for mixes characterized by a lower amount of the forming ice. In general, application of above freezing temperature resulted in resuming of the hydration process that led to densification of the microstructure and strength increase. This trend was more pronounced for mixes having lower amounts of the formed ice.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Kothari, Ankit
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Rajczakowska, Magdalena
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Cwirzen, Andrzej
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    UHPC overlay as sustainable solution to preserve old concrete structures2022Ingår i: MATEC Web of Conferences: International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022) / [ed] M.G. Alexander; H. Beushausen; F. Dehn; J. Ndawula; P. Moyo, EDP Sciences, 2022, artikel-id 04014Konferensbidrag (Refereegranskat)
    Abstract [en]

    Concrete structures exposed to harsh environments, especially including bridges, harbor structures are often suffered from durability problems. Typical external signs include surface deterioration, cracking caused by for example sulphate attack, frost action or reinforcement corrosion. All are strongly linked to the porous microstructure of the binder matrix and chemical decomposition of certain phases. Full replacement of deteriorated concrete structures is costly and can be troublesome for their users. The increasing demand to reduce the carbon footprint and to prolong the service life of concrete structures adds yet another argument to restore the existing structures. One alternative is to use very dense Ultra-High-Performance concrete (UHPC) as an external protective coating. The goal of this study was to determine the interfacial bonding characteristics between a damaged normal concrete (NC) and the applied thin layer of the UHPC. To curb the CO2 emission, UHPC is produced by substituting 50 wt% of Portland cement with a fine limestone powder. Fresh and hardened properties, shrinkage and frost durability have been evaluated. Mechanical properties were determined on a full-scale hybrid element using ultrasonic pulse velocity (UPV) and bond test (pull-off test). The results showed a significant increase of mechanical properties. Despite the applied thin layer of UHPC and volumetric restrain from the substrate normal concrete (NC) only limited surface shrinkage cracks were observed. The bond test and UPV showed good excellent values.

    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Kothari, Ankit
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Habermehl-Cwirzen, Karin
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Hedlund, Hans
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand. Skanska Teknik AB, Skanska Sverige AB, 40518 Göteborg, Sweden.
    Cwirzen, Andrzej
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    A Review of the Mechanical Properties and Durability of Ecological Concretes in a Cold Climate in Comparison to Standard Ordinary Portland Cement-Based Concrete2020Ingår i: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 13, nr 16, artikel-id 3467Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Most of the currently used concretes are based on ordinary Portland cement (OPC) which results in a high carbon dioxide footprint and thus has a negative environmental impact. Replacing OPCs, partially or fully by ecological binders, i.e., supplementary cementitious materials (SCMs) or alternative binders, aims to decrease the carbon dioxide footprint. Both solutions introduced a number of technological problems, including their performance, when exposed to low, subfreezing temperatures during casting operations and the hardening stage. This review indicates that the present knowledge enables the production of OPC-based concretes at temperatures as low as −10 °C, without the need of any additional measures such as, e.g., heating. Conversely, composite cements containing SCMs or alkali-activated binders (AACs) showed mixed performances, ranging from inferior to superior in comparison with OPC. Most concretes based on composite cements require pre/post heat curing or only a short exposure to sub-zero temperatures. At the same time, certain alkali-activated systems performed very well even at −20 °C without the need for additional curing. Chemical admixtures developed for OPC do not always perform well in other binder systems. This review showed that there is only a limited knowledge on how chemical admixtures work in ecological concretes at low temperatures and how to accelerate the hydration rate of composite cements containing high amounts of SCMs or AACs, when these are cured at subfreezing temperatures.

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Kothari, Ankit
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Rajczakowska, Magdalena
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Buasiri, Thanyarat
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Habermehl-Cwirzen, Karin
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Cwirzen, Andrzej
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Eco-UHPC as Repair Material-Bond Strength, Interfacial Transition Zone and Effects of Formwork Type2020Ingår i: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 13, nr 24, artikel-id 5778Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A reduced carbon footprint and longer service life of structures are major aspects of circular economy with respect to civil engineering. The aim of the research was to evaluate the interfacial bond properties between a deteriorated normal strength concrete structure and a thin overlay made of Eco-UHPC containing 50 wt% of limestone filler. Two types of formwork were used: untreated rough plywood and surface treated shuttering plywood. The normal strength concrete elements were surface scaled using water jets to obtain some degradation prior to casting of the UHPC overlay. Ultrasonic pulse velocity (UPV), bond test (pull-off test), and Scanning Electron Microscopy (SEM) combined with Energy Dispersive Spectrometry (EDS) were used for analysis. Elements repaired with the Eco-UHPC showed significantly improved mechanical properties compared to the non-deteriorated NSC sample which was used as a reference. The bond strength varied between 2 and 2.7 MPa regardless of the used formwork. The interfacial transition zone was very narrow with only slightly increased porosity. The untreated plywood, having a rough and water-absorbing surface, created a surface friction-based restraint which limited microcracking due to autogenous shrinkage. Shuttering plywood with a smooth surface enabled the development of higher tensile stress on the UHPC surface, which led to a more intensive autogenous shrinkage cracking. None of the formed microcracks penetrated through the entire thickness of the overlay and some were partly self-healed when a simple water treatment was applied. The project results showed that application of UHPC as repair material for concrete structures could elongate the lifespan and thus enhance the sustainability.

  • 8.
    Tole, Ilda
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Rajczakowska, Magdalena
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Humad, Abeer
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Kothari, Ankit
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Cwirzen, Andrzej
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Geopolymer Based on Mechanically Activated Air-cooled Blast Furnace Slag2020Ingår i: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 13, nr 5, artikel-id 1134Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An efficient solution to increase the sustainability of building materials is to replace Portland cement with alkali-activated materials (AAM). Precursors for those systems are often based on water-cooled ground granulated blast furnace slags (GGBFS). Quenching of blast furnace slag can be done also by air but in that case, the final product is crystalline and with a very low reactivity. The present study aimed to evaluate the cementitious properties of a mechanically activated (MCA) air-cooled blast furnace slag (ACBFS) used as a precursor in sodium silicate alkali-activated systems. The unreactive ACBFS was processed in a planetary ball mill and its cementing performances were compared with an alkali-activated water-cooled GGBFS. Mixes based on mechanically activated ACBFS reached the 7-days compressive strength of 35 MPa and the 28-days compressive strength 45 MPa. The GGBFS-based samples showed generally higher compressive strength values.

  • 9.
    Zhaka, Vasiola
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Kothari, Ankit
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Cwirzen, Andrzej
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Possible Effects of Sea Ice on Concrete Used in Arctic Conditions2019Ingår i: Proceedings: The 1st International Conference on Smart Materials for Sustainable Construction, SMASCO 2019 / [ed] Andrzej Cwirzen, Karin Habermehl-Cwirzen, Carina Hannu, Magdalena Rajczakowska, Ilda Tole, Thanyarat Buasiri, Ankit Kothari and Vasiola Zhaka, MDPI, 2019, Vol. 34, artikel-id 13Konferensbidrag (Refereegranskat)
    Abstract [en]

    The Arctic region is receiving an increasing attention due to the diminishing area of the permanent ice and easing access to various natural resources including especially oil, gas and rare metals. The nearest future will require building a significant number of new harbors and other structures related to sea operations and exploration. Harsh weather conditions including especially extreme freezing temperatures, snowfall and ice formation impose demanding requirements, which must be taken into account while designing, building and maintaining those structures. Concrete is the main construction material used for harbor structures. Unfortunately, the usage of Portland cement, which is the main cementitious binder used for concrete, it involves hardening processes, which are controlled by the hydration reactions. The hydration needs water and temperatures above freezing point, which impose serious limitations in the arctic environment. Furthermore, later exposure to the arctic conditions and especially to ice may impair its long-term durability and thus the sustainability of built structures. The present work focuses on characterization of properties of sea ice forming in harbors located in the Arctic region and on identification of possible implications on concrete material during the construction phase but also in long-term exploitation.

    Ladda ner fulltext (pdf)
    fulltext
  • 10.
    Kothari, Ankit
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Andersson, Louise
    RISE Research Institutes of Sweden, 11121 Stockholm, Sweden.
    Cwirzen, Andrzej
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Restoration of Deteriorated Concrete Columns by Wrapping with an Ecological UHPC2019Ingår i: Proceedings, 2019, SMASCO 2019: The 1st International Conference on Smart Materials for Sustainable Construction / [ed] Andrzej Cwirzen, Karin Habermehl-Cwirzen, Carina Hannu, Magdalena Rajczakowska, Ilda Tole, Thanyarat Buasiri, Ankit Kothari, Vasiola Zhaka, MDPI, 2019, artikel-id 4Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    Ultra high performance concrete (UHPC) is self-compacting, reaching compressive strength over 200 MPa and flexural strength exceeding 30 MPa material. The used very low W/C ratio and high amount of Portland cement often exceeding 900 kg/m3, addition of up to 30% of silica fume produces a very dense and nearly impermeable binder matrix. In this research, cement was substituted with limestone filler to lower the effective CO2 footprint. Prepared concrete mixes had high slump flow of 850 mm and reached the compressive strength of 150 MPa after 28 days. Full-scale columns having dimension of 30 × 30 × 250 cm were produced using self-compacting concrete (Figure 1a,b), having the 28 days compressive strength of 40 MPa. External surfaces of the 3 months old columns were water jetted to simulated real case scenario (Figure 1c). For the test, the columns were surrounded by a plywood formwork leaving less than 3 cm of spacing between the concrete surface and the formwork (Figure 1d). The concrete was poured from top of the column and with no segregation reached the bottom and perfectly filled the mold. Test included determination of basic mechanical properties, bond strength between UHPC and “old” concrete, crack formation and frost durability. All results exceeded expectations.

    Ladda ner fulltext (pdf)
    fulltext
  • 11.
    Humad, Abeer
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand. Civil Engineering Department, Babylon University, Hillah, Iraq.
    Kothari, Ankit
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    Provis, John L.
    Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom.
    Cwirzen, Andrzej
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Byggkonstruktion och brand.
    The Effect of Blast Furnace Slag/Fly Ash Ratio on Setting, Strength, and Shrinkage of Alkali-Activated Pastes and Concretes2019Ingår i: Frontiers in Materials, ISSN 2296-8016, Vol. 6, nr 9Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The aim of this study was to determine the effects of partial fly ash substitution in to a series of alkali-activated concrete based on a high-MgO blast furnace slag BFS. Mixes were activated with various amounts of sodium silicate at alkali modulus (mass ratio SiO2/Na2O) values of 1.0, 0.5, and 0.25. The results showed that, an increase in the fly ash content extended the initial setting time but had very little effect on the final setting time, although the early age compressive strength was decreased. The fly ash addition had no effect on the drying shrinkage but lowered the autogenous shrinkage. The mixes activated with sodium silicate at a lower alkali modulus showed a significantly higher autogenous shrinkage but lower drying shrinkage values. Severe micro cracking of the binder matrix was observed only for mixes without fly ash, activated with sodium silicate solution at higher alkali modulus. Decreasing the alkali modulus resulted in a higher autogenous shrinkage, less micro cracking and a more homogenous structure due to more extensive formation of sodium-aluminate-silicate-hydrate gel (N-A-S-H), promoted by the addition, and more extensive reaction of the fly ash.

1 - 11 av 11
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf