Ändra sökning
Avgränsa sökresultatet
1 - 6 av 6
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Fagerström, Erik
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.
    Ljung, Anna-Lena
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.
    Shape and temperature dependence on the directional velocity change in a freezing water droplet2023Ingår i: International Journal of Thermofluids, ISSN 2666-2027, Vol. 20, artikel-id 100519Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Freezing of water droplets are of interest in areas such as de-icing and anti-icing of wind turbine blades, aircrafts and cars. On part of the ice build-up that has been less studied is the internal flow in water droplets and how it affects the freezing process. In this paper the aim is to investigate how the contact angle, substrate composition and temperature influences the internal flow. Particle Image Velocimetry (PIV) is used to determine the magnitude and direction of the internal flow, with specific emphasis on directional changes. Results show that a larger contact angle will increase the internal velocity, freezing time and time until the directional change. Cooler substrate temperature increase the internal velocity while reducing the freezing time, but the dependence on the time until the directional change is not as pronounced. The result thus indicate differences in the driving forces between freezing time, internal velocity and directional velocity change. Difference due to substrate composition, i.e. mixture of ice and metal versus only metal is furthermore compared.

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Fagerström, Erik
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.
    Ljung, Anna-Lena
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.
    Experimental Investigation of the Directionalvelocity Change in a Freezing Water Droplet2022Ingår i: Svenska Mekanikdagar 2022 / [ed] Pär Jonsén; Lars-Göran Westerberg; Simon Larsson; Erik Olsson, Luleå tekniska universitet, 2022Konferensbidrag (Refereegranskat)
    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Fagerström, Erik
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.
    Ljung, Anna-Lena
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.
    Influence of Contact Angle on the Internal Flow in a Freezing Water Droplet2022Ingår i: Proceedings of the 8th World Congress on Mechanical, Chemical, and Material Engineering (MCM'22) / [ed] Huihe Qiu, Avestia Publishing, 2022, artikel-id HTFF 153Konferensbidrag (Refereegranskat)
    Abstract [en]

    Ice accretion upon a surface is of interest in areas such as wind power, electric power transmission and vehicles in cold climate. Ice assimilation appears when humid air or water droplets impacts and freezes on a cold surface. In the study presented in this paper, droplets are deposited onto aluminium plates constructed to generate specific a contact angle between the droplet and substrate. Five contact angles are investigated and Particle Image Velocimetry (PIV) is used to analyse the internal flow. The droplets are studied along the vertical centerline and at horizontal lines at distances of 50% and 75% of the total height of the droplet. From the results it is found that a lower contact angle will increase the magnitude of the internal flow close to the edges. A larger contact angle will instead increase the magnitude of the flow in the center of the droplet. For a droplet with lower contact angle it was furthermore found that there is a triangular area inside the droplet with close to zero velocity. 

  • 4.
    Fagerström, Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.
    Influence of the Substrate on the Internal Flow in Freezing Water Droplets2022Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    A water droplet that impacts on a cold surface will start to freeze and in time ice will accumulate. To exemplify, effects of ice accretion is important in areas such as power generation e.g. wind power and vehicles located in a cold climate e.g. aircraft, cars, and boats. The common denominator for these examples is that ice accumulation can lead to a loss of efficiency and in some cases danger.

    Most studies have so far focused on investigating freezing water droplets visually in experiments or numerically in regards to how the freezing process behaves in terms of shape or freezing time for either a sessile or impacting droplet. It has been observed that the surface material and structures of the substrate is of importance. One part of the freezing process that has been less investigated is the internal flow and how it affects the freezing process.

    In this thesis, the internal flow in a freezing water droplet has been investigated experimentally. The internal flow inside a droplet is calculated by using Particle Image Velocimetry. A metal plate with a groove filled with ice was used to generate an area for the nucleation to start and to be able to control the shape of the droplet. 

    Previous work indicate that the substrate is of importance for the freezing process. The influence of the substrate material on the internal flow for similar shaped droplets is therefore investigated in Paper A, for a substrate temperature of -8°C. The results show that the substrate material, here in terms of metals such as aluminum, copper and steel, affect the magnitude of the internal velocity. In paper B it is investigated how the contact angle influence the internal flow. The vector field is examined at 9% of the total freezing time for water droplets at five different contact angles. A droplet with a higher contact angle will have a higher internal velocity in the center. A lower contact angle will barely show any movement in the center, however a higher velocity magnitude is observed close to the free surface compared to a droplet with a higher contact angle. Paper C studies the time until the directional change of the internal flow in a water droplet. Experiments at -8°C as in Paper B are used as well as experiments at -12°C for the five different contact angles. The time until the directional change is similar in time for both -8°C and -12°C while the total freezing time and also the time of the directional change varies with contact angles. A droplet with a lower contact angle will have a shorter time until the directional change occure while an increase in contact angle prolongs both freezing time and the time until the directional change.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Fagerström, Erik
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.
    Ljung, Anna-Lena
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.
    Karlsson, Linn
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.
    Lycksam, Henrik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.
    Influence of substrate material on flow in freezing water droplets—an experimental study2021Ingår i: Water, E-ISSN 2073-4441, Vol. 13, nr 12, artikel-id 1628Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Freezing water droplets are a natural phenomenon that occurs regularly in the Arctic climate. It affects areas such as aircrafts, wind turbine blades and roads, where it can be a safety issue. To further scrutinize the freezing process, the main objective of this paper is to experimentally examine the influence of substrate material on the internal flow of a water droplet. The secondary goal is to reduce uncertainties in the freezing process by decreasing the randomness of the droplet size and form by introducing a groove in the substrate material. Copper, aluminium and steel was chosen due to their differences in thermal conductivities. Measurements were performed with Particle Image Velociometry (PIV) to be able to analyse the velocity field inside the droplet during the freezing process. During the investigation for the secondary goal, it could be seen that by introducing a groove in the substrate material, the contact radius could be controlled with a standard deviation of 0.85%. For the main objective, the velocity profile was investigated during different stages of the freezing process. Five points along the symmetry line of the droplet were compared and copper, which also has the highest thermal conductivity, showed the highest internal velocity. The difference between aluminium and steel was in their turn more difficult to distinguish, since the maximum velocity switched between the two materials along the symmetry line.

  • 6.
    Fagerström, Erik
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.
    Ljung, Anna-Lena
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.
    Experimental Investigation of Shape and Temperature on the Directional Change of the Internal Flow in a Freezing Water DropletManuskript (preprint) (Övrigt vetenskapligt)
1 - 6 av 6
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf