Ändra sökning
Avgränsa sökresultatet
1 - 28 av 28
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Broekhuizen, Ico
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Marsalek, Jiri
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Calibration event selection for green urban drainage modelling2019Ingår i: Hydrology and Earth System Sciences Discussions, ISSN 1812-2108, E-ISSN 1812-2116Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Calibration of urban drainage models is typically performed based on a limited number of observed rainfall-runoff events, which may be selected from a longer time-series of measurements in different ways. In this study, 14 single- and two-stage strategies for selecting these events were tested for calibration of a SWMM model of a predominantly green urban area. The event selection was considered in relation to other sources of uncertainty such as measurement uncertainties, objective functions, and catchment discretization. Even though all 14 strategies resulted in successful model calibration, the difference between the best and worst strategies reached 0.2 in Nash–Sutcliffe Efficiency (NSE) and the calibrated parameter values notably varied. Most, but not all, calibration strategies were robust to changes in objective function, perturbations in calibration data and the use of a low spatial resolution model in the calibration phase. The various calibration strategies satisfactorily predicted 7 to 13 out of 19 validation events. The two-stage strategies performed better than the single-stage strategies when measuring performance using the Root Mean Square Error, flow volume error or peak flow error (but not using NSE); when flow data in the calibration period had been perturbed by ±40 %; and when using a lower model resolution. The two calibration strategies that performed best in the validation period were two-stage strategies. The findings in this paper show that different strategies for selecting calibration events may lead in some cases to different results for the validation period, and that calibrating impermeable and green area parameters in two separate steps may improve model performance in the validation period, while also reducing the computational demand in the calibration phase.

  • 2.
    Gavric, Snezana
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Marsalek, Jiri
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Processes improving urban stormwater quality in grass swales and filter strips: A review of research findings2019Ingår i: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 669, s. 431-447Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Increasing interest in urban drainage green infrastructure brings attention to grass swales and filter strips (GS&GFS) and their role in stormwater management. While the understanding of the hydrology and hydraulics of these stormwater control measures is adequate for current needs, there are knowledge gaps in understanding the water quality processes in GS&GFS and such a finding motivated preparation of the review paper that follows. The review revealed that most of the empirical studies of GS&GFS flow quality focused on the removal of pollutants associated with road runoff, and particularly solids, with relatively few studies addressing nutrients, traffic associated hydrocarbons, oxygen demanding substances, chloride, and faecal indicator bacteria. The reported results suffer from limitations caused by experimental conditions often representing a steady flow used to irrigate GS&GFS and generate runoff, non-submerged flows, no lateral inflows along swale side slopes, constant dosing of solids, emphasis on larger-than-typical solids, incomplete descriptions of experimental conditions, and limited attention to experimental uncertainties. Besides settling, other treatment processes, like adsorption/desorption, plant uptake, chemical precipitation and microbial degradation are often acknowledged, but without attempting to quantify their effects on flow quality. The modelling of GS&GFS flow quality would be beneficial for an improved understanding of green urban drainage infrastructure, but currently it is infeasible without a better knowledge of stormwater quality processes in GS&GFS facilities.

  • 3.
    Broekhuizen, Ico
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Marsalek, Jiri
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Selection of Calibration Events for Modelling Green Urban Drainage2019Ingår i: New Trends in Urban Drainage Modelling: UDM 2018 / [ed] Giorgio Mannina, Cham: Springer, 2019, s. 608-613Konferensbidrag (Refereegranskat)
    Abstract [en]

    Urban drainage models are often calibrated using a limited number of rainfall-runoff events, which may be selected in different ways from a longer observation series. This paper compares 13 different single- and two-stage strategies for selecting events used to calibrate a SWMM model of a predominantly green urban area. Most led to successful calibration, but performance varied for various validation events. Most selection strategies were insensitive to the choice of Nash-Sutcliffe Model Efficiency or Root Mean Squared Error as the objective function. Calibrating impervious and green area parameters separately in two-stage strategies can help improve prediction of low-flow events in validation.

  • 4.
    Broekhuizen, Ico
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Rujner, Hendrik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Roldin, Maria
    DHI Sweden.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Towards using soil water content observations for calibration of distributed urban drainage models2019Konferensbidrag (Refereegranskat)
    Abstract [en]

    Fully distributed urban drainage models can be used to analyse and predict the behaviour of green urban drainage infrastructure such as swales, but they need to be calibrated for specific study sites. Using only drainage outflow measurements may not provide enough information to do this in an optimal way, so additional types of measurements have to be considered. This study identifies different approaches to including soil water content (SWC) observations in the calibration process and investigates how they affect parameter identifiability and the predictive uncertainty of the calibrated model. This is done using the Generalized Likelihood Uncertainty Estimation methodology applied to a model of a large urban swale. It was found that setting initial conditions based on the SWC measurements improved the fit between observed and simulated SWC, but also reduced the accuracy of the simulated amount of infiltration. Including SWC observations allowed to identify one parameter (saturated moisture content of the swale bottom) that was not identifiable from outflow measurements alone. Including SWC observations in the derivation of predictive uncertainty bounds made those bounds narrower (more precise), but where SWC had been used to set initial conditions the uncertainty bound failed to capture the observations. It is concluded that SWC observations can provide useful information for the calibration of distributed urban drainage models.

  • 5.
    Rujner, Hendrik
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Marsalek, Jiri
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    High-resolution modelling of the grass swale response to runoff inflows with Mike SHE2018Ingår i: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 562, s. 411-422Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The feasibility of simulating the hydrological response of a grass swale to runoff inflows was examined using the hydrological model Mike SHE and the available input data from 12 irrigation events mimicking runoff from block rainfalls. The test swale channel had a trapezoidal cross-section, bottom slope of 1.5%, length of 30 m, and was built in loamy fine sand. The irrigation events consisted in releasing two equal constant inflows to the swale: a concentrated longitudinal flow at the upstream end and a distributed lateral inflow along the swale side slope adjacent to the contributing drainage area. The total inflows approximated runoff from two events with return periods of 2 months and 3 years, respectively, for durations of 30 min. Irrigation experiments were done for two states of the initial soil moisture, dry or wet antecedent moisture conditions (AMC). Mike SHE has been extensively used on catchments of various sizes, but rarely for small stormwater management facilities and their detailed topography investigated in this study. The latter application required high spatial and temporal resolutions, with computational cells of 0.2 × 0.2 m and time steps as short as 0.6 s to avoid computational instabilities. For dominant hydrological processes, the following computational options in Mike SHE were chosen: Soil infiltration – the van Genuchten equation, unsaturated zone flow – the one-dimensional Richards equation, and overland flow – the diffusive wave approximation of the St. Venant equations. For study purposes, the model was calibrated for single events representing one of four combinations of low and high inflows, and dry and wet AMC, and then applied to the remaining 11 events. This was complemented by calibration for two events, representing high inflow on wet AMC and low inflow in dry AMC. The goodness of fit was statistically assessed for observed and simulated peak flows, hydrograph volumes, Nash-Sutcliffe model efficiencies (NSE), and soil water content (SWC) in swale soil layers. The best fit (NSE > 0.8) was obtained for high inflows and wet AMC (i.e., when the primary swale function is flow conveyance); the least fit was noted for low inflows and dry AMC, when the primary swale function is flow attenuation. Furthermore, this observation indicates the overall importance of correct modelling of the soil infiltration. The effects of spatial variation of SWC on the swale discharge hydrograph could not be confirmed from simulation results, but high topographical accuracy was beneficial for reproducing well the locations of the observed water ponding. No significant increases in simulated SWC at 0.3 m or greater depths were noted, which agreed with field observations. Overall, the results indicated that Mike SHE was effective in process-oriented small-scale modelling of grass swale flow hydrographs.

  • 6.
    Moghadas, Shahab
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Marsalek, Jiri
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Modeling Urban Runoff from Rain-on-Snow Events with the U.S. EPA SWMM Model for Current and Future Climate Scenarios2018Ingår i: Journal of cold regions engineering, ISSN 0887-381X, E-ISSN 1943-5495, Vol. 32, nr 1, artikel-id 04017021Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A methodological study of modeling runoff from rain-on-snow events was conducted using the northern Swedish city of Kiruna as a test case, with respect to physiographic, drainage system, and the current and projected future climate data. Runoff simulations were carried out with the PCSWMM, which is a geographic information system (GIS) supported version of the U.S. EPA Storm Water Management Model (U.S. EPA SWMM5) developed by Computational Hydraulics International (CHI). In total, 177 simulations were run covering four scenario categories: eight rain events, three climates (the current and two projected), three soil infiltration rates, and five snow water equivalent (SWE) values. Simulation results were analyzed with respect to influential rainfall/snowmelt/runoff factors and the noted differences were statistically tested for significance. Result analysis revealed new findings concerning the differences between runoff generated by rain-on-snow and summer thunderstorm events. In particular, it was noted that a relatively frequent rain-on-snow event, with a return period of 1.4 year, caused fewer flooded nodes and surcharged pipes in the catchment sewer system, but almost five times greater runoff volume, when compared to the same drainage system performance indicators corresponding to a 10-year event occurring in the summer. Depending on the physical characteristics of the snow cover, among which the depth appears the most important, rainwater and snowmelt may be retained in, or released from, the snowpack, which acts as a dynamic reservoir controlling the generation and release of runoff. Smaller snow depths produce smaller volumes of melt, smaller storage capacity and less effective insulation of soils, which may freeze to greater depths and become practically impervious, until the process of soil thawing has been completed. The impacts of climate change in the study area, described by increases in precipitation and air temperatures, are likely to cause more frequent runoff problems attributed to the future rain-on-snow events. Even though the runoff tendencies reported here reflect the characteristics of the study area and climate, they suggest the need to consider rain-on-snow events in sewer design and storm water management in regions with seasonal snow covers, certainly with respect to runoff volumes.

  • 7.
    Rujner, Hendrik
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Marsalek, Jiri
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Perttu, Anna-Maria
    SENS Sustainable Energy Solutions, 12154 Nacka, Sweden.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    The effects of initial soil moisture conditions on swale flow hydrographs2018Ingår i: Hydrological Processes, ISSN 0885-6087, E-ISSN 1099-1085, Vol. 32, nr 5, s. 644-654Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The effects of soil water content (SWC) on the formation of run‐off in grass swales draining into astorm sewer system were studied in two 30‐m test swales with trapezoidal cross sections. Swale1 was built in a loamy fine‐sand soil, on a slope of 1.5%, and Swale 2 was built in a sandy loam soil,on a slope of 0.7%. In experimental runs, the swales were irrigated with 2 flow rates reproducing run‐off from block rainfalls with intensities approximately corresponding to 2‐month and 3‐year events. Run‐off experiments were conducted for initial SWC (SWCini) ranging from 0.18 to 0.43 m3/m3. For low SWCini, the run‐off volume was greatly reduced by up to 82%, but at highSWCini, the volume reduction was as low as 15%. The relative swale flow volume reductions decreased with increasing SWCini and, for the conditions studied, indicated a transition of the dominating swale functions from run‐off dissipation to conveyance. Run‐off flow peaks were reduced proportionally to the flow volume reductions, in the range from 4% to 55%. The swale outflow hydrograph lag times varied from 5 to 15 min, with the high values corresponding tolow SWCini. Analysis of swale inflow/outflow hydrographs for high SWCini allowed estimations of the saturated hydraulic conductivities as 3.27 and 4.84 cm/hr in Swales 1 and 2, respectively. Such estimates differed from averages (N = 9) of double‐ring infiltrometer measurements (9.41 and 1.78 cm/hr). Irregularities in swale bottom slopes created bottom surface depression storage of 0.35 and 0.61 m3 for Swales 1 and 2, respectively, and functioned similarly as check bermscontributing to run‐off attenuation. The experimental findings offer implications for drainage swale planning and design: (a) SWCini strongly affect swale functioning in run‐off dissipation and conveyance during the early phase of run‐off, which is particularly important for design storms and their antecedent moisture conditions, and (b) concerning the longevity of swale operation, Swale 1 remains fully functional even after almost 60 years of operation, as judged from its attractive appearance, good infiltration rates (3.27 cm/hr), and high flow capacity.

  • 8.
    Sun, Siao
    et al.
    Key laboratory of Regional Sustainable Development Modeling, Institute of Geographical Sciences and Natural Resource Research, Chinese Academy of Sciences, Beijing, People’s Republic of China.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten. Unit of Environmental Engineering, University of Innsbruck.
    Sandoval, Santiago
    Université de Lyon, INSA Lyon, DEEP, Villeurbanne, France.
    Bertrand-Krajewski, Jean-Luc
    Université de Lyon, INSA Lyon, DEEP, Villeurbanne, France.
    Rauch, Wolfgang
    Unit of Environmental Engineering, University of Innsbruck, Austria.
    A Bayesian method for missing rainfall estimation using a conceptual rainfall–runoff model2017Ingår i: Hydrological Sciences Journal, ISSN 0262-6667, E-ISSN 2150-3435, Vol. 62, nr 15, s. 2456-2468Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The estimation of missing rainfall data is an important problem for data analysis and modelling studies in hydrology. This paper develops a Bayesian method to address missing rainfall estimation from runoff measurements based on a pre-calibrated conceptual rainfall–runoff model. The Bayesian method assigns posterior probability of rainfall estimates proportional to the likelihood function of measured runoff flows and prior rainfall information, which is presented by uniform distributions in the absence of rainfall data. The likelihood function of measured runoff can be determined via the test of different residual error models in the calibration phase. The application of this method to a French urban catchment indicates that the proposed Bayesian method is able to assess missing rainfall and its uncertainty based only on runoff measurements, which provides an alternative to the reverse model for missing rainfall estimates.

  • 9.
    Leonhardt, Günther
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Moghadas, Shahab
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Marsalek, Jiri
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    An exploratory study of snowmelt runoff modelling in an urban catchment using the US EPASWMM model2017Ingår i: 14th IWA/IAHR International Conference On Urban Drainage, 2017, s. 78-81Konferensbidrag (Refereegranskat)
  • 10.
    Zischg, Jonatan
    et al.
    Unit of Environmental Engineering, University of Innsbruck, Austria.
    Goncalves, Mariana L. R.
    Unit of Environmental Engineering, University of Innsbruck, Austria.
    Bacchin, Taneha K.
    Environmental Technology & Design, Department of Urbanism, Faculty of Architecture and the Built Environment, Delft University of Technology, The Netherlands.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    van Timmeren, Arjan
    Environmental Technology & Design, Department of Urbanism, Faculty of Architecture and the Built Environment, Delft University of Technology, The Netherlands.
    Rauch, Wolfgang
    Unit of Environmental Engineering, University of Innsbruck, Austria.
    Sitzenfrei, Robert
    Unit of Environmental Engineering, University of Innsbruck, Austria.
    Info-Gap robustness pathway method for transitioning of urban drainage systems under deep uncertainties2017Ingår i: Water Science and Technology, ISSN 0273-1223, E-ISSN 1996-9732, Vol. 76, nr 5, s. 1272-1281Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In the urban water cycle, there are different ways of handling stormwater runoff. Traditional systems mainly rely on underground piped, sometimes named ‘gray’ infrastructure. New and so-called ‘green/blue’ ambitions aim for treating and conveying the runoff at the surface. Such concepts are mainly based on ground infiltration and temporal storage. In this work a methodology to create and compare different planning alternatives for stormwater handling on their pathways to a desired system state is presented. Investigations are made to assess the system performance and robustness when facing the deeply uncertain spatial and temporal developments in the future urban fabric, including impacts caused by climate change, urbanization and other disruptive events, like shifts in the network layout and interactions of ‘gray’ and ‘green/blue’ structures. With the Info-Gap robustness pathway method, three planning alternatives are evaluated to identify critical performance levels at different stages over time. This novel methodology is applied to a real case study problem where a city relocation process takes place during the upcoming decades. In this case study it is shown that hybrid systems including green infrastructures are more robust with respect to future uncertainties, compared to traditional network design.

  • 11.
    Broekhuizen, Ico
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Muthanna, Tone Murete
    Norwegian University of Science and Technology.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Model structure uncertainty in urban drainage models for green areas2017Ingår i: 14th IWA/IAHR International Conference on Urban Drainage: Conference Proceedings, 2017, Prague, 2017, s. 1490-1494Konferensbidrag (Refereegranskat)
    Abstract [en]

    Two urban drainage models (SWMM and MOUSE) were used to study the impact of model structureuncertainty on long-term simulation of green areas. Depending on the soil profile being consideredsignificant differences were observed between the models, both on an annual and event basedscale. In general MOUSE generates more runoff and is more sensitive to changing soil depth. Thedifferences can be explained by the conceptual approaches used to model infiltration, which alsoaffects how much water is apportioned to evapotranspiration, surface runoff, and baseflow.

  • 12.
    Zischg, Jonatan
    et al.
    Unit of Environmental Engineering, Univeristy of Innsbruck, Innsbruck, Austria.
    Goncalves, Mariana
    Unit of Environmental Engineering, Univeristy of Innsbruck, Innsbruck, Austria.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Kleidorfer, Manfred
    Unit of Environmental Engineering, Univeristy of Innsbruck, Innsbruck, Austria.
    Rauch, Wolfgang
    Unit of Environmental Engineering, Univeristy of Innsbruck, Innsbruck, Austria.
    Sitzenfrei, Robert
    Unit of Environmental Engineering, Univeristy of Innsbruck, Innsbruck, Austria.
    Transformation der Stadtentwässerung unter Berücksichtigung von „grüner“ und „blauer“ Infrastruktur2017Ingår i: Österreichische Wasser- und Abfallwirtschaft, ISSN 0945-358X, Vol. 69, nr 3, s. 180-185Artikel i tidskrift (Refereegranskat)
    Abstract [de]

    Neue Bestrebungen in der Siedlungswasserwirtschaft zielen darauf ab, leitungsgebundene („graue“) Wasserinfrastruktur und die damit verbundene rasche Ableitung von Niederschlagswasser zu vermeiden. Neben einer Annäherung an den natürlichen Wasserkreislauf besteht die Erwartung, dass „grün-blaue“ Konzepte flexibler und robuster hinsichtlich zukünftiger Veränderungen, wie Klimawandel oder Urbanisierung, sind. In dieser Arbeit wird ein möglicher Übergang von grauer (traditioneller) zu grün-blauer Infrastruktur anhand der Stadt Kiruna (Schweden) untersucht, in der in den nächsten Jahrzehnten eine große Stadtumwandlung bevorsteht und die Implementierung von dezentralen (grün-blauen) Entwässerungsanlagen angestrebt wird. Dabei wird die hydraulische Leistungsfähigkeit des städtischen Entwässerungssystems über die Zeit anhand von unterschiedlichen Implementierungsmaßstäben grün-blauer Infrastruktur sowie unter Berücksichtigung von zukünftigen Unsicherheiten (zufolge Klimawandel und Urbanisierung) untersucht. Im Zuge der Umwandlung werden die Systeme mit den verfolgten Strategien über die Zeit bewertet und ermöglichen dem Planer einen Vergleich der Systemvarianten und die Identifizierung von kritischen Zuständen. Zudem soll eine robuste Systemvariante ermittelt werden, welche unter einer großen Bandbreite möglicher zukünftiger Entwicklungen ihre Funktionsfähigkeit beibehält. Der entwickelte generische Ansatz stellt eine Methodik zur Beurteilung jeglicher Stadttransformationsprozesse und deren Auswirkungen auf die Wasserinfrastruktur dar (bspw. Stadtwachstum, Absiedlung, Umsiedlung etc.).

  • 13.
    Rujner, Hendrik
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten. Unit of Environmental Engineering, University of Innsbruck.
    Perttu, Anna-Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Marsalek, Jiri
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Advancing green infrastructure design: Field evaluation of grassed urban drainage swales2016Ingår i: Novatech proceedings 2016, 2016Konferensbidrag (Refereegranskat)
    Abstract [en]

    Grassed drainage swales, which represent common elements of urban green infrastructures, are designed for different soils, flow capacities, dimensions, slopes and vegetation. Their design is often based on local experience rather than technical guidelines, and consequently, the design and performance of grassed swales, with respect to flow capacity and stormwater management objectives may significantly vary from one jurisdiction to another. To improve this situation and reduce design uncertainties, a field study of grassed swales was conducted by assessing their hydrologic performance. A 30-m section of an urban grassed swale in sandy soils, located in the City of Luleå (Northern Sweden), was equipped with a mobile water supply system and instrumented for measuring swale flow characteristics. The water supply system comprised five containers (~ 1 m3 each) providing controlled longitudinal and lateral inflows into the tested swale section. These inflows were selected to mimic stormwater runoff from a typical drainage area. At the first test site, 14 rainfall events of 30- minute duration were simulated and the resulting swale flows and soil moisture conditions were measured. The experimental variables addressed included wet and dry antecedent conditions, and three inflow rates. The preliminary results indicate that the degree of swale inflow attenuation depended on the magnitude of runoff inflow, on the initial soil moisture conditions and that significant volumes of water can be stored and transmitted during the stormwater drainage process.

  • 14.
    Burger, Gregor
    et al.
    Unit of Environmental Engineering, University of Innsbruck.
    Bach, Peter M.
    Monash Infrastructure Research Institute, Monash University, Melbourne, VIC, Cooperative Research Centre (CRC) for Water Sensitive Cities.
    Urich, Christian
    Unit of Environmental Engineering, University of Innsbruck, CRC for Water Sensitive Cities, Monash University, Melbourne, VIC.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten. Unit of Environmental Engineering, University of Innsbruck.
    Kleidorfer, Manfred
    Unit of Environmental Engineering, University of Innsbruck.
    Rauch, Wolfgang
    Unit of Environmental Engineering, University of Innsbruck.
    Designing and implementing a multi-core capable integrated urban drainage modelling Toolkit: Lessons from CityDrain32016Ingår i: Advances in Engineering Software, ISSN 0965-9978, E-ISSN 1873-5339, Vol. 100, s. 277-289Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Integrated urban drainage modelling combines different aspects of the urban water system into a common framework. With increasing pressures of a changing climate, urban growth and economic constraints, the need for wider spread integration is necessary in the interest of a sustainable future. Greater complexity results in greater computational burden but modelling packages will, likewise, need to be flexible enough to allow incorporation of new algorithms. With advancements in modern information technology, a parallel implementation of such a modelling toolkit is mandatory while still leaving its users the flexibility of extensions. The design and implementation of the integrated modelling framework CityDrain3 shows that it is possible to write research code that is high-performance and extensible by many research projects. Three use case scenarios are presented to showcase the application of CityDrain3. The performance advantage of parallelization (up to 40 times compared to its predecessor) and the scalability of the framework are also demonstrated.

  • 15.
    Borris, Matthias
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Marsalek, Jiri
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Österlund, Helene
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Source-Based Modeling Of Urban Stormwater Quality Response to the Selected Scenarios Combining Future Changes in Climate and Socio-Economic Factors2016Ingår i: Environmental Management, ISSN 0364-152X, E-ISSN 1432-1009, Vol. 58, nr 2, s. 223-237Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The assessment of future trends in urban stormwater quality should be most helpful for ensuring the effectiveness of the existing stormwater quality infrastructure in the future and mitigating the associated impacts on receiving waters. Combined effects of expected changes in climate and socio-economic factors on stormwater quality were examined in two urban test catchments by applying a source-based computer model (WinSLAMM) for TSS and three heavy metals (copper, lead, and zinc) for various future scenarios. Generally, both catchments showed similar responses to the future scenarios and pollutant loads were generally more sensitive to changes in socio-economic factors (i.e., increasing traffic intensities, growth and intensification of the individual land-uses) than in the climate. Specifically, for the selected Intermediate socio-economic scenario and two climate change scenarios (RSP = 2.6 and 8.5), the TSS loads from both catchments increased by about 10 % on average, but when applying the Intermediate climate change scenario (RCP = 4.5) for two SSPs, the Sustainability and Security scenarios (SSP1 and SSP3), the TSS loads increased on average by 70 %. Furthermore, it was observed that well-designed and maintained stormwater treatment facilities targeting local pollution hotspots exhibited the potential to significantly improve stormwater quality, however, at potentially high costs. In fact, it was possible to reduce pollutant loads from both catchments under the future Sustainability scenario (on average, e.g., TSS were reduced by 20 %), compared to the current conditions. The methodology developed in this study was found useful for planning climate change adaptation strategies in the context of local conditions.

  • 16.
    Zischg, Jonatan
    et al.
    Unit of Environmental Engineering, University of Innsbruck,Innsbruck, Austria.
    Goncalves, M. L. R.
    Unit of Environmental Engineering, University of Innsbruck,Innsbruck, Austria.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten. Unit of Environmental Engineering, University of Innsbruck.
    Kleidorfer, Manfred
    Unit of Environmental Engineering, University of Innsbruck,Innsbruck, Austria.
    Rauch, Wolfgang
    Unit of Environmental Engineering, University of Innsbruck,Innsbruck, Austria.
    Sitzenfrei, Robert
    Unit of Environmental Engineering, University of Innsbruck,Innsbruck, Austria.
    Von grauer zu grüner Wasserinfrastruktur am Fallbeispiel Kiruna2016Ingår i: Tagungsband Aqua Urbanica 2016: "Miss es oder vergiss es" - Daten, Wissen und Konzepte für denGewässerschutz bei Regenwetter, Rigi-Kaltbad, Switzerland, 2016, s. 113-118Konferensbidrag (Övrigt vetenskapligt)
    Abstract [de]

    In dieser Arbeit wird ein möglicher Übergang von grauer (traditioneller) zu grünerInfrastruktur anhand der Stadt Kiruna (Schweden) untersucht, in der in den nächsten Jahrzehnten einegroße Stadtumwandlung bevorsteht und die Implementierung von dezentralen (grünen)Entwässerungsanlagen angestrebt wird. Dabei wird die hydraulische Leistungsfähigkeit desstädtischen Entwässerungssystems über die Zeit anhand von drei unterschiedlichenImplementierungsmaßstäben grüner Infrastruktur, sowie unter Berücksichtigung von zukünftigenUnsicherheiten (zufolge Klimawandel und Urbanisierung) untersucht. Im Zuge der Umwandlungwerden die Systeme mit den verfolgten Strategien über die Zeit bewertet und ermöglichen dem Planereinen Vergleich der Systemvarianten und die Identifizierung von kritischen Zuständen. Zudem solleine robuste Systemvariante ermittelt werden, welche unter einer großen Bandbreite möglicherzukünftiger Entwicklungen seine Funktionsfähigkeit beibehält. Der entwickelte generische Ansatzstellt eine Methodik zur Beurteilung jeglicher Stadttransformationsprozesse und deren Auswirkungenauf die Wasserinfrastruktur dar (bspw. Stadtwachstum, Absiedlung, Umsiedlung, etc.).

  • 17.
    Leonhardt, Günther
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Moghadas, Shahab
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Johansson, Lars
    Tekniska Verken i Kiruna AB.
    Gustafsson, Anna-Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Marsalek, Jiri
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Modelling the effects of the joint occurrence of rainfall and snowmedlt in urban catchments2015Ingår i: Urban Drainage Modelling 2015: Proceedings of the 10th International Conference of Urban Drainage Modelling, Mont-Sainte-Anne, Québec, Canada 20-23 Swptember 2015 / [ed] Thomas Maere; Sovanna Tik; Sophie Duchense; Peter A. Vanrolleghem, 2015, s. 25-31Konferensbidrag (Refereegranskat)
  • 18.
    Leonhardt, Günther
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Moghadas, Shahab
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Gustafsson, Anna-Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Marsalek, Jiri
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Modelling the effects of the joint occurrence of rainfall and snowmelt in urban catchments2015Konferensbidrag (Refereegranskat)
  • 19.
    Leonhardt, Günther
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Moghadas, Shahab
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Gustafsson, Anna-Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Marsalek, Jiri
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Modelling the effects of the joint occurrence of rainfall and snowmelt in urban catchments2015Konferensbidrag (Refereegranskat)
  • 20.
    Leonhardt, Günther
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Bacchin, Taneha K
    Department of Urbanism, Faculty of Architecture and the Built Environment, Delft University of Technology.
    Mair, Michael
    Unit of Environmental Engineering, Institute for Infrastructure Engineering, University of Innsbruck.
    Zischg, Jonathan
    Unit of Environmental Engineering, Institute for Infrastructure Engineering, University of Innsbruck.
    Ljung, Stina
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Rogers, Briony
    School of Social Sciences, Monash Water for Liveability Centre, Monash University.
    Goldkuhl, Lena
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Gustafsson, Anna-Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Sitzenfrei, Robert
    Unit of Environmental Engineering, Institute for Infrastructure Engineering, University of Innsbruck.
    Blecken, Godecke-Tobias
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Ashley, Richard
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Rauch, Wolfgang
    Unit of Environmental Engineering, Institute for Infrastructure Engineering, University of Innsbruck.
    Timmeren, Arjan van
    Department of Urbanism, Faculty of Architecture and the Built Environment, Delft University of Technology.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Relocating a city, challenges and opportunities for the transition of water infrastructure in Kiruna2015Ingår i: Urban Drainage Modelling 2015: Proceedings of the 10th International Conference of Urban Drainage Modelling, Mont-Sainte-Anne, Québec, Canada 20-23 Swptember 2015 / [ed] Thomas Maere; Sovanna Tik; Sophie Duchense; Peter A. Vanrolleghem, 2015, s. 77-84Konferensbidrag (Refereegranskat)
  • 21.
    Borris, Matthias
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Marsalek, Jiri
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Österlund, Helene
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Source-based modeling of stormwater quality response to projected future changes in climatic and socio-economic factors2015Ingår i: Urban Drainage Modelling 2015: Poster presentations : Proceedings of the 10th International Conference of Urban Drainage Modelling, Mont-Sainte-Anne, Québec, Canada 20-23 Swptember 2015 / [ed] Thomas Maere; Sovanna Tik; Sophie Duchense; Peter A. Vanrolleghem, 2015, s. 73-78Konferensbidrag (Övrigt vetenskapligt)
  • 22.
    Leonhardt, Günther
    et al.
    University of Innsbruck, Unit of Environmental Engineering.
    Sun, Siao
    Université de Lyon, INSA Lyon, LGCIE.
    Rauch, Wolfgang
    University of Innsbruck, Unit of Environmental Engineering.
    Bertrand-Krajewski, Jean Luc
    Université de Lyon, INSA Lyon, LGCIE.
    Comparison of two model based approaches for areal rainfall estimation in urban hydrology2014Ingår i: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 511, s. 880-890Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We introduce and compare two different approaches to estimate mean areal rainfall intensity in urban catchments. Both methods are based on the same lumped hydrological model that is calibrated beforehand. The first method uses a reverse model, i.e. an inverse formulation of a rainfall-runoff model. Rainfall intensities and their uncertainties are estimated from runoff data only. The second method estimates parameters of a rainfall error model using a Bayesian approach. It requires measurements of both runoff and rainfall. Although the two approaches are conceptually rather different, they address the same issue - the quantification of areal rainfall intensities and their related measurement errors - and a comparison is hence of interest. The merits and faults of the two methods are discussed. Results show that both methods provide best estimates of hyetographs with maximum intensities and total depths in a realistic order of magnitude, whereas the uncertainty of rainfall estimated with the reverse model is rather large. © 2014.

  • 23.
    Leonhardt, G.
    et al.
    Unit of Environmental Engineering, Institute for Infrastructure Engineering, University of Innsbruck.
    D'Oria, M.
    Department of Civil, Environmental and Land Engineering and Architecture, University of Parma.
    Kleidorfer, M.
    Unit of Environmental Engineering, Institute for Infrastructure Engineering, University of Innsbruck.
    Rauch, W.
    Unit of Environmental Engineering, Institute for Infrastructure Engineering, University of Innsbruck.
    Estimating inflow to a combined sewer overflow structure with storage tank in real time: Evaluation of different approaches2014Ingår i: Water Science and Technology, ISSN 0273-1223, E-ISSN 1996-9732, Vol. 70, nr 7, s. 1143-1151Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The performance assessment of storage tanks and combined sewer overflow (CSO) structures in sewer systems requires knowledge of the total inflow from the catchment during rainfall events. Many structures are, however, only equipped with sensors to measure water level and/or outflows. Based on the geometry of the tank, expressed as a level-storage relationship, inflow can be calculated from these data using a simple conceptual storage model. This paper compares a deterministic and a Bayesian approach for estimating the inflow to a CSO structure from measurements of outflows and water level. The Bayesian approach clearly outperforms the deterministic estimation which is very sensitive to measurement errors. Although computationally more demanding, the use of a simple linear storage model allows the online application of the Bayesian approach to repeatedly estimate inflow in short time intervals of a few minutes. The method could thus be used as an online software sensor for inflow to storage structures in sewer systems.

  • 24.
    Leonhardt, Günther
    et al.
    Unit of Environmental Engineering, Institute for Infrastructure, University of Innsbruck.
    Fach, Stefan
    Unit of Environmental Engineering, Institute for Infrastructure, University of Innsbruck.
    Engelhard, Carolina
    Unit of Environmental Engineering, Institute for Infrastructure, University of Innsbruck.
    Kinzel, Heiko
    Hydro-IT GmbH.
    Rauch, Wolfgang
    University of Innsbruck, Unit of Environmental Engineering.
    A software-based sensor for combined sewer overflows2012Ingår i: Water Science and Technology, ISSN 0273-1223, E-ISSN 1996-9732, Vol. 66, nr 7, s. 1475-1482Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A new methodology for online estimation of excess flow from combined sewer overflow (CSO) structures based on simulation models is presented. If sufficient flow and water level data from the sewer system is available, no rainfall data are needed to run the model. An inverse rainfall-runoff model was developed to simulate net rainfall based on flow and water level data. Excess flow at all CSO structures in a catchment can then be simulated with a rainfall-runoff model. The method is applied to a case study and results show that the inverse rainfall-runoff model can be used instead of missing rain gauges. Online operation is ensured by software providing an interface to the SCADAsystem of the operator and controlling the model. A water quality model could be included to simulate also pollutant concentrations in the excess flow

  • 25.
    Achleitner, Stefan
    et al.
    Unit of Hydraulic Engineering, University of Innsbruck.
    Schröber, Johannes
    AlpS - Centre for Climate Change Adaptation Technologies, Innsbruck.
    Rinderer, Michael
    Hydrology and Climate Unit, Department of Geography, University of Zurich.
    Leonhardt, Günther
    Unit of Environmental Engineering, University of Innsbruck.
    Schöberl, Friedrich
    Institute of Geography, University of Innsbruck.
    Kirnbauer, Robert
    Institute of Hydraulic Engineering and Water Resources Management, Vienna University of Technology.
    Schönlaub, Helmut
    TIWAG - Tiroler Wasserkraft AG.
    Analyzing the operational performance of the hydrological models in an alpine flood forecasting system2012Ingår i: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 412-413, s. 90-100Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    During recent years a hybrid model has been set up for the operational forecasting of flood discharges in the 6750km 2 Tyrolean part of the River Inn catchment in Austria. The catchment can be characterized as a typical alpine area with large variations in altitude. The paper is focused on the error analysis of discharge forecasts of four main tributary catchments simulated with hydrological water balance models. The selected catchments cover an area of 2230km 2, where the non-glaciated and glaciated parts are modeled using the semi-distributed HQsim and the distributed model SES, respectively.The forecast errors are evaluated as a function of forecast lead time and forecasted discharge magnitude using 14 events from 2007 to 2010. The observed and forecasted precipitation inputs were obtained under operational conditions. The mean relative bias of the forecasted discharges revealed to be constant with regard to the forecast lead time, varying between 0.2 and 0.25 for the different catchments. The errors as a function of the forecasted discharge magnitude showed large errors at lower values of the forecast hydrographs, where errors decreased significantly at larger discharges being relevant in flood forecasting

  • 26.
    Kleidorfer, Manfred
    et al.
    University of Innsbruck, Unit of Environmental Engineering.
    Leonhardt, Günther
    University of Innsbruck, Unit of Environmental Engineering.
    Rauch, Wolfgang
    University of Innsbruck, Unit of Environmental Engineering.
    Identifiability analysis in conceptual sewer modelling2012Ingår i: Water Science and Technology, ISSN 0273-1223, E-ISSN 1996-9732, Vol. 66, nr 7, s. 1467-1474Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    For a sufficient calibration of an environmental model not only parameter sensitivity but also parameter identifiability is an important issue. In identifiability analysis it is possible to analyse whether changes in one parameter can be compensated by appropriate changes of the other ones within a given uncertainty range. Parameter identifiability is conditional to the information content of the calibration data and consequently conditional to a certain measurement layout (i.e. types of measurements, number and location of measurement sites, temporal resolution of measurements etc.). Hence the influence of number and location of measurement sites on the number of identifiable parameters can be investigated. In the present study identifiability analysis is applied to a conceptual model of a combined sewer system aiming to predict the combined sewer overflow emissions. Different measurement layouts are tested and it can be shown that only 13 of the most sensitive catchment areas (represented by the model parameter 'effective impervious area') can be identified when overflow measurements of the 20 highest overflows and the runoff to the waste water treatment plant are used for calibration. The main advantage of this method is very low computational costs as the number of required model runs equals the total number of model parameters. Hence, this method is a valuable tool when analysing large models with a long runtime and many parameters

  • 27.
    Senfter, S.
    et al.
    AlpS-Centre for Natural Hazard Management, Innsbruck.
    Leonhardt, Günther
    AlpS-Centre for Natural Hazard Management, Innsbruck.
    Oberparleiter, C.
    AlpS-Centre for Natural Hazard Management, Innsbruck.
    Asztalos, J.
    AlpS-Centre for Natural Hazard Management, Innsbruck.
    Kirnbauer, Robert
    Vienna University of Technology, Institute for Hydraulic and Water Resources Engineering.
    Schöberl, Friedrich
    University of Innsbruck, Institute of Geography.
    Schönlaub, Helmut
    TIWAG - Tiroler Wasserkraft AG.
    Flood forecasting for the river inn2009Ingår i: Sustainable Natural Hazard Management in Alpine Environments, Berlin: Springer Berlin/Heidelberg, 2009, s. 35-67Kapitel i bok, del av antologi (Refereegranskat)
    Abstract [en]

    The river Inn as the main river in Tyrol moulds the settlement and economic area in Northern Tyrol in a considerable way. 66 % of the area drains into the Inn, whereas the remaining 34% drain into the Lech, the Grossache and the Drau in East Tyrol. The Inn flows through Tyrol for about 200∈km, from the Swiss border at Martinsbruck to Kufstein, where it leaves Tyrol and flows into Bavaria/Germany (Fig. 2.1).

  • 28.
    Broekhuizen, Ico
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten. Luleå Tekniska Universitet.
    Muthanna, Tone Merete
    Norwegian University of Science and Technology.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Model structure uncertainty in green urban drainage modelsManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Mathematical storm water models are often used as tools for planning and analysis of urban drainage systems, but the models’ inherent uncertainties need to be understood to make optimal use of them. One source of uncertainty that has received relatively little attention, especially for the increasingly popular green areas as part of urban drainage systems, is the choice of the mathematical model structure. This paper analyses the differences between three different widely-used models (SWMM, MIKE MOUSE and MIKE SHE) when simulating green areas over a 26 year period. A wide range of eleven different soil types and six different soil depths was used to investigate sensitivity of the models to changes in both. Important hydrological factors such as seasonal runoff and evapotranspiration, the number of events that generated runoff, and the initial conditions for rainfall events, varied strongly between the three models. MOUSE generated the highest runoff and was insensitive to changes in soil type and depth, while SHE was sensitive mainly to changes in soil type, and SWMM, which generated the least runoff, was sensitive to changes in both soil type and depth. Explanations for the observed differences were found in the descriptions of the mathematical models. The differences in model outputs could significantly impact the conclusions from design or analysis studies of urban drainage systems. The amount and frequency of runoff from green areas in all three models indicates that green areas cannot be simply ignored in urban drainage modelling studies.

1 - 28 av 28
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf