Ändra sökning
Avgränsa sökresultatet
1 - 5 av 5
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Broekhuizen, Ico
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Marsalek, Jiri
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Calibration event selection for green urban drainage modelling2019Ingår i: Hydrology and Earth System Sciences Discussions, ISSN 1812-2108, E-ISSN 1812-2116Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Calibration of urban drainage models is typically performed based on a limited number of observed rainfall-runoff events, which may be selected from a longer time-series of measurements in different ways. In this study, 14 single- and two-stage strategies for selecting these events were tested for calibration of a SWMM model of a predominantly green urban area. The event selection was considered in relation to other sources of uncertainty such as measurement uncertainties, objective functions, and catchment discretization. Even though all 14 strategies resulted in successful model calibration, the difference between the best and worst strategies reached 0.2 in Nash–Sutcliffe Efficiency (NSE) and the calibrated parameter values notably varied. Most, but not all, calibration strategies were robust to changes in objective function, perturbations in calibration data and the use of a low spatial resolution model in the calibration phase. The various calibration strategies satisfactorily predicted 7 to 13 out of 19 validation events. The two-stage strategies performed better than the single-stage strategies when measuring performance using the Root Mean Square Error, flow volume error or peak flow error (but not using NSE); when flow data in the calibration period had been perturbed by ±40 %; and when using a lower model resolution. The two calibration strategies that performed best in the validation period were two-stage strategies. The findings in this paper show that different strategies for selecting calibration events may lead in some cases to different results for the validation period, and that calibrating impermeable and green area parameters in two separate steps may improve model performance in the validation period, while also reducing the computational demand in the calibration phase.

  • 2.
    Broekhuizen, Ico
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Marsalek, Jiri
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Selection of Calibration Events for Modelling Green Urban Drainage2019Ingår i: New Trends in Urban Drainage Modelling: UDM 2018 / [ed] Giorgio Mannina, Cham: Springer, 2019, s. 608-613Konferensbidrag (Refereegranskat)
    Abstract [en]

    Urban drainage models are often calibrated using a limited number of rainfall-runoff events, which may be selected in different ways from a longer observation series. This paper compares 13 different single- and two-stage strategies for selecting events used to calibrate a SWMM model of a predominantly green urban area. Most led to successful calibration, but performance varied for various validation events. Most selection strategies were insensitive to the choice of Nash-Sutcliffe Model Efficiency or Root Mean Squared Error as the objective function. Calibrating impervious and green area parameters separately in two-stage strategies can help improve prediction of low-flow events in validation.

  • 3.
    Broekhuizen, Ico
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Rujner, Hendrik
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Roldin, Maria
    DHI Sweden.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Towards using soil water content observations for calibration of distributed urban drainage models2019Konferensbidrag (Refereegranskat)
    Abstract [en]

    Fully distributed urban drainage models can be used to analyse and predict the behaviour of green urban drainage infrastructure such as swales, but they need to be calibrated for specific study sites. Using only drainage outflow measurements may not provide enough information to do this in an optimal way, so additional types of measurements have to be considered. This study identifies different approaches to including soil water content (SWC) observations in the calibration process and investigates how they affect parameter identifiability and the predictive uncertainty of the calibrated model. This is done using the Generalized Likelihood Uncertainty Estimation methodology applied to a model of a large urban swale. It was found that setting initial conditions based on the SWC measurements improved the fit between observed and simulated SWC, but also reduced the accuracy of the simulated amount of infiltration. Including SWC observations allowed to identify one parameter (saturated moisture content of the swale bottom) that was not identifiable from outflow measurements alone. Including SWC observations in the derivation of predictive uncertainty bounds made those bounds narrower (more precise), but where SWC had been used to set initial conditions the uncertainty bound failed to capture the observations. It is concluded that SWC observations can provide useful information for the calibration of distributed urban drainage models.

  • 4.
    Broekhuizen, Ico
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Uncertainties in rainfall-runoff modelling of green urban drainage systems: Measurements, data selection and model structure2019Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Green urban drainage systems are used to avoid flooding and damages to people and property, while limiting the downstream flooding and water quality problems caused by pipe-based drainage systems. Computer models are used to analyse and predict the performance of such systems for design and operation purposes. Such models are simplifications of reality and based on uncertain measured data, so uncertainties will be involved in the modelling process and its outcomes, which can affect the design and operation of these systems. These uncertainties have been investigated extensively for traditional pipe-based urban drainage systems, but not yet for green alternatives. Therefore, the overall objective of this thesis is to contribute to improved applicability and reliability of computer models of green urban drainage systems. Specifically, the thesis aims to (1) improve understanding of the uncertainties arising from (a) model structure and (b) calibration data selection, (2) evaluate two alternative calibration methods for green urban drainage models, (3) discuss desirable structural features in urban drainage models, and (4) evaluate several sensors for hydrometeorological measurements in urban catchments.

    The effects of model structure uncertainty were investigated using long-term simulations of synthetic catchments with varying soil types and depths for three different models. First, it was found that surface runoff could be a significant part of the annual water balance in all three models, depending on the soil type and depth considered. Second, differences were found in how sensitive the different models were to changes in soil type and depth. Third, the variation between different models was often large compared to the variation between different soil types. Fourth, the magnitude of inter-annual and inter-event variation varied between the models. Overall, the findings indicate that significant differences may occur in urban drainage modelling studies, depending on which model is used, and this may affect the design or operation of such systems.

    The uncertainty from calibration data selection was investigated primarily by calibrating both a low- and high-resolution stormwater model using different sets of events. These event sets used different rainfall-runoff statistics to rank all observed events before selecting the top six for use in calibration. In addition, they varied by either calibrating all parameters simultaneously, or by calibrating parameters for impervious and pervious surfaces separately. This last approach sped up the calibration process. In the validation period the high-resolution models performed better than their low-resolution counterparts and the two-stage calibrations matched runoff volume and peak flows better than single-stage calibrations. Overall, the way in which the calibration events are selected was shown to have a major impact on the performance of the calibrated model.

    Calibration data selection was also investigated by examining different ways of including soil water content (SWC) observations in the calibration process of a model of a swale. Some model parameters could be identified from SWC, but not from outflow observations. Including SWC in the model evaluation affected the precision of swale outflow predictions. Different ways of setting initial conditions in the model (observations or an equilibrium condition) affected both of these findings.

    The precipitation sensors used in this thesis showed generally satisfactory performance in field calibration checks. Different types of precipitation sensors were associated with different requirements for maintenance and data acquisition. Sensors for sewer pipe flow rates showed good agreement with a reference instrument in the laboratory, as long as installation conditions were good. Higher pipe slopes and upstream obstacles lead to larger measurement errors, but this last effect was reduced by increasing water levels in the pipe. Sensor fouling was a source of errors and gaps in field measurements, showing that regular maintenance is required. The findings show that the evaluated flow sensors can perform satisfactorily, if measurement sites are carefully selected.

  • 5.
    Broekhuizen, Ico
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Muthanna, Tone Murete
    Norwegian University of Science and Technology.
    Leonhardt, Günther
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Viklander, Maria
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Model structure uncertainty in urban drainage models for green areas2017Ingår i: 14th IWA/IAHR International Conference on Urban Drainage: Conference Proceedings, 2017, Prague, 2017, s. 1490-1494Konferensbidrag (Refereegranskat)
    Abstract [en]

    Two urban drainage models (SWMM and MOUSE) were used to study the impact of model structureuncertainty on long-term simulation of green areas. Depending on the soil profile being consideredsignificant differences were observed between the models, both on an annual and event basedscale. In general MOUSE generates more runoff and is more sensitive to changing soil depth. Thedifferences can be explained by the conceptual approaches used to model infiltration, which alsoaffects how much water is apportioned to evapotranspiration, surface runoff, and baseflow.

1 - 5 av 5
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf