Ändra sökning
Avgränsa sökresultatet
1 - 6 av 6
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Hadi Jafari, Pantea
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Wingren, Anders
    Meva Energy AB, Hisings Backa.
    Hellström, J. Gunnar I.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.
    Gebart, Rikard
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Effect of process parameters on the performance of an air-blown entrained flow cyclone gasifier2020Ingår i: International Journal of Sustainable Energy, ISSN 1478-6451, E-ISSN 1478-646X, Vol. 39, nr 1, s. 21-40Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Entrained flow gasification of biomass in a cyclone reactor combined by a gas engine has been applied in Nordic countries as one of the preferred methods for generating combined heat and power in small scales. The purpose of the current study was to optimise the gasification plant efficiency and understanding the influence of operating conditions. The experiments were carried out in a 2.4 MW(th) commercial gasification power plant. The gasifier was operated in optimum at a rather low lambda around 0.27 and a temperature of 950°C. The lower heating value of the clean product gas at this lambda was 5.95 MJ/Nm3. The experimental results also were compared with the predicted values from thermodynamic equilibrium calculations by Factsage 7.0. The performance of five different types of biofuels including torrefied spruce, peat, rice husk, bark and stemwood were assessed and compared with each other using thermodynamic equilibrium and available experimental data.

  • 2.
    Hadi Jafari, Pantea
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap. Lulea University of Technology.
    Risberg, Mikael
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Hellström, J. Gunnar I.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.
    Gebart, Rikard
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Numerical Simulation of Biomass Gasification in an Entrained Flow Cyclone Gasifier2020Ingår i: Energy & Fuels, ISSN 0887-0624, E-ISSN 1520-5029Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A transient, two-way coupled Eulerian−Lagrangian computational fluid dynamics model has been developed for numerically investigating the gasification process of wood powder inside a cyclone-shaped reactor. The suggested model has considered heat and mass transfer, drying, devolatilization, and homogeneous and heterogeneous reactions. The model is validated using the experimental data from a commercial entrained-flow cyclone gasifier. The changes in gas composition as a function of equivalence ratio and the behavior of gasification process agreed well with the experimental measurement. Trajectories of individual particles were captured, and the behavior, mass fraction, and temperature distribution of several representative particles in different sizes were studied. Moreover, the model was successful in prediction of produced gas lower heating value, cold gas efficiency, and carbon conversion.

  • 3.
    Hadi Jafari, Pantea
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Misiulia, Dzmitry
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.
    Hellström, J. Gunnar I.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.
    Gebart, Rikard
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Modeling of Particle-Laden Cold Flow in a Cyclone Gasifier2018Ingår i: Journal of Fluids Engineering - Trancactions of The ASME, ISSN 0098-2202, E-ISSN 1528-901X, Vol. 141, nr 2, artikel-id 021302Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Isothermal transient Eulerian–Lagrangian simulation of the turbulent gas–solid flow in a cyclone gasifier with two inlet tubes at 890 °C has been performed. The single-phase gas flow is modeled using SSG Reynolds stress turbulence model. Ten thousand representative solid particles of different sizes are injected from each inlet continuously at every second of simulation time. Particles are finally stopped as soon as they arrive at the outlet or reach the bottom plate of the gasifier. The effect of particle-to-gas coupling on the pressure and velocity of the flow and particles motion inside the gasifier is studied. The numerical approach can reasonably predict the impact of particle load on the gas flow as presented in the experimental results. Single particles are traveled throughout the transient gas flow field by using Lagrangian approach. High temperature of the gas flow inside the gasifier has significant effects on the swirl intensity reduction, damping the turbulence in the core region, pressure, and particle behaviors. However, the presence of solid particles does not have a notable influence on the swirl intensity and turbulence.

  • 4.
    Hadi Jafari, Pantea
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Numerical Modeling of Cyclone Gasification2018Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    The current work aims to make a numerical model for an engineering design of anindustrial cyclone gasifier called as the Hortlax plant with capacity of providing 2.4 (MWth)of district heating as well as 1.3 (MW) of electricity. The model is needed to be able not onlyto predict the gasifier flow field with a suitable accuracy but also to investigate a largenumber of design alternatives with limited computer resources.The time-dependent single-phase flow field in a cyclone at first was simulated by usingseveral popular turbulence models including standard k-epsilon and SST models withcurvature correction, SSG-RSM and LES Smagorinsky models. The goal was to find the mostappropriate turbulence modeling as a foundation for the further works. Averaged andfluctuating parts of the simulated velocity component profiles from different turbulencemodels were compared with each other and the LDA measurements from literature.Comparison showed that the SSG-RSM can be the best alternative for the future simulations.An isothermal time-dependent Eulerian-Lagrangian particle modeling was implemented asthe second step for simulating particle-laden cold flow in the Hortlax gasifier. The impacts ofparticle-to-gas coupling on the pressure and velocity of the flow and particles motion insidethe gasifier were studied. The model could reasonably predict the particle tracking aspresented in the experimental results from the literature. High temperature of the gas flowinside the gasifier had quite important effects on the reduction of swirl and turbulenceintensity especially in the core region, pressure and particle behaviors. However, the presenceof solid particles did not influence the swirl intensity and turbulence significantly.The Hortlax gasifier was moreover experimentally studied in order to optimize thegasification plant efficiency, and understand the effect of operating. The air stoichiometricratio was varied to find the optimal condition for the plant. Moreover, the gasification processwas modeled using adiabatic thermodynamic equilibrium to see how far the process is fromequilibrium condition. Five different commercially available fuels were also studied usingequilibrium calculations. It was found that the gasifier is needed to work under the processtemperature of 1000 °C and stoichiometric ratio of 0.3, since at higher temperature the ash ismelted that is seriously avoided in the cyclone gasifier. Accordingly, the amount of undesiredmethane in the produced gas is quite high and the gasification efficiency is relatively lowaround 56%. Although the process does not reach equilibrium, it was seen thatthermodynamic equilibrium could compare the fuels performance almost close to theexperiments.

  • 5.
    Hadi Jafari, Pantea
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Hellström, Gunnar
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.
    Gebart, Rikard
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Turbulence Modelling of a Single-Phase Flow Cyclone Gasifier2017Ingår i: Engineering, ISSN 1947-3931, E-ISSN 1947-394X, Vol. 9, nr 9, s. 779-799, artikel-id 79329Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The current work aims to make a foundation for an engineering design of a cyclone gasifier to be able not only to predict its flow field with a suitable accuracy but also to investigate a large number of design alternatives with limited computer resources. A good single-phase flow model that can form the basis in an Euler-Lagrange model for multi-phase flow is also necessary for modelling the reacting flow inside a cyclone gasifier. The present paper provides an objective comparison between several popular turbulence modelling options including standard k-ε and SST with curvature corrections, SSG-RSM and LES Smagorinsky models, for the single-phase flow inside cyclone separators/gasifiers that can serve as a guide for further work on the reacting multi-phase flow inside cyclone gasifiers and similar devices. A detailed comparison between the models and experimental data for the mean velocity and fluctuating parts of the velocity profiles are presented. Furthermore, the capabilities of the turbulence models to capture the physical phenomena present in a cyclone gasifier that affects the design process are investigated.

  • 6.
    Hadi Jafari, Pantea
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Gebart, Rikard
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Energivetenskap.
    Hellström, J. Gunnar I.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.
    On the Influence from Turbulence Modeling on Particle Suspension Flow in Cyclone Gasifiers2014Konferensbidrag (Refereegranskat)
    Abstract [en]

    Air-blown cyclone gasification is an entrained flow gasification process in which biomass powder fuel is burnt in a gasifier that operates similarly to a cyclone separator. Cyclone separators are widely used in industry to separate a dispersed solid phase (e.g. particles) from a continuous flow of gas based on density differences. Due to its simple design, the cyclone is a reliable apparatus with low cost for manufacture and maintenance.The performance of an isothermal cyclone separator can be predicted satisfactorily with the model developed by Muschelknautz et al. However, the flow in a non-isothermal cyclone gasifier has additional complexities, e.g. the production of gas from the fuel particles, that are outside the scope of the Muschelknautz model. In order to incorporate these effects more advanced modeling based on Computational Fluid Dynamics is needed. One problem with the CFD approach in combination with turbulent heat transfer and chemical reactions is that the complexity of the global model makes it difficult to assess the accuracy of the sub-models. Recently published models are based on relatively simple eddy-viscosity turbulence models. The agreement between these models and experiments has been encouraging but one cannot rule out the possibility that the apparently good performance of the model is a lucky coincidence due to cancellation of errors in the different sub models.The present paper is focusing on the fluid dynamics modeling of the flow in a cyclone gasifier in order to develop a better foundation for continued modeling. Since simulation of dispersed phase behavior is based on a precise modeling of the continuous phase flow field, it is valuable to assess different numerical approaches to find the most promising one for simulating the turbulent gas phase flow. Due to the complexity of turbulent swirling flow in a cyclone gasifier, a careful selection of turbulence models is needed to fulfill accurate numerical calculations of flow parameters. Two families of turbulence models are supposed to be tested: the two-equation eddy viscosity models including k-epsilon and k-omega, and the Reynolds stress model. For the k-epsilon model, steady-state and transient simulations are implemented. The gas cyclone of Obermair et al. with relevant operating conditions was chosen as a benchmark. The simulation results are compared to the Laser Doppler Anemometry (LDA) velocity measurements of the gas cyclone. The simulations are implemented in the commercial CFD (computational fluid dynamics) code ANSYS CFX 14.5; which uses an element-based finite volume approach. The method involves discretization of the spatial domain using a three-dimensional mesh to build up finite volumes over which relevant quantities like mass, momentum, and energy are conserved. In all, the capability of the mentioned approaches for representing the flow field in general and the precessing vortex core and its related fluctuations in particular will be discussed.

1 - 6 av 6
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf