Endre søk
Begrens søket
12345 101 - 150 of 201
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 101.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Global uppvärmning orsakas av värmeutsläpp2004Inngår i: Energi och miljö, ISSN 1101-0568, nr 3, s. 53-55Artikkel i tidsskrift (Annet (populærvitenskap, debatt, mm))
    Abstract [sv]

    Eftersom den solstrålning som når Jorden återstrålar till rymden så värms inte Jorden av solen - sett över en längre tid (år). Utan denna balans skulle Jorden ha blivit allt varmare med åren. Jorden är i själva verket en värmekälla i rymden till vilken den strålar ut sin nettovärme. Nettoutstrålningen sker från jordytan, skikt- för-skikt genom atmosfären, för att sedan stråla ut mot rymden vars temperatur är cirka - 270°C. Innan den globala uppvärmningen började ca 1880 var Jordens medeltemperatur 13,6°C (medelvärde av lufttemperaturen över land och hav, vilket även är jordytans medeltemperatur). Då var Jorden i termisk balans med rymden dvs nettovärmeutstrålningen var lika stor som det geotermiska värmeflödet från Jordens inre. Det geotermiska värmeflödet är den enda naturliga och ständiga nettovärmekällan på Jorden. Utstrålningen av värme från jordytan till atmosfären sker för att jordytans temperatur är högre än den i atmosfären. Atmosfärens medeltemperatur är -18,8°C vilket är precis vad som krävs för att all solinstrålning ska kunna återstråla till rymden. Jordens medeltemperatur har sedan 1880 höjts med 0,7 graderC till 14,3°C. Denna förhöjda temperatur har medfört att även utstrålningen till rymden ökat, dvs den är nu högre än enbart värmeflödet från Jordens inre. Därför måste ny nettovärme ha tillkommit under de senaste 120 åren!

  • 102.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Global warming and thermal pollution2003Inngår i: Proceedings of the International Conference on Energy and Environment, 2003Konferansepaper (Fagfellevurdert)
  • 103.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Global warming is large-scale thermal energy storage2006Inngår i: Thermal Energy Storage for Sustainable Energy Consumption: Fundamentals, Case Studies and Design. Proceedings of the NATO Advanced Study Institute on Thermal Energy Storage for Sustainable Energy Consumption - Fundamentals, Case Studies and Design, Izmir, Turkey, 6-17 June 2005, Dordrecht: Springer, 2006, s. 75-86Kapittel i bok, del av antologi (Annet vitenskapelig)
  • 104.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Heating and cooling applications in Wintercities: a futuristic view2000Inngår i: Winter Cities 2000: Energy and Environment. Proceedings, Luleå, 2000Konferansepaper (Annet vitenskapelig)
  • 105.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Hur länge ska det ryska folkmordet fortsätta?1999Inngår i: Aftonbladet, ISSN 1103-9000, nr 16 maj, s. 3-Artikkel i tidsskrift (Annet (populærvitenskap, debatt, mm))
  • 106.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    IEA Energy Conservation through Energy Storage Implementing Agreement: Annex 8 - Implementing Underground Thermal Energy Storage1999Konferansepaper (Annet vitenskapelig)
  • 107.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Implementing underground thermal energy storage: main results and findings of IEA ECES Annex 82000Inngår i: Proceedings: TERRASTOCK 2000, 8th International Conference on Thermal Energy Storage : University of Stuttgart, Germany, August 28th until September 1st, 2000 / [ed] Martin Benner, Stuttgart: Universität Stuttgart , 2000, s. 7-12Konferansepaper (Fagfellevurdert)
  • 108.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Is-i-rider - den isdrivna bilen: teknik och forskning2001Inngår i: Energi och miljö, ISSN 1101-0568, nr 3, s. 65-66Artikkel i tidsskrift (Annet vitenskapelig)
  • 109.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Ismotorn: hydraulisk kraftöverföring av istryck1986Rapport (Annet vitenskapelig)
  • 110.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    It is all about thermal energy storage2009Inngår i: Abstract book and proceedings : Effstock 2009: 11th International conference on Thermal Energy Storage for Energy Efficiency and Sustainability / [ed] Signhild Gehlin, Stockholm: Energi- och Miljötekniska Föreningen / EMTF Förlag , 2009Konferansepaper (Fagfellevurdert)
  • 111.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Kaos och Turbulens1989Rapport (Annet vitenskapelig)
    Abstract [en]

    Modern chaos theory is discussed and applied on turbulence.

  • 112.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Kyla från månfångare1999Inngår i: Energi och miljö, ISSN 1101-0568, Vol. 70, nr 12, s. 70-Artikkel i tidsskrift (Annet (populærvitenskap, debatt, mm))
  • 113.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Kyls med snö hela sommaren2001Inngår i: Miljöforskning : Formas tidning : för ett uthålligt samhälle, ISSN 1650-4925, nr 5-6, s. 38-39Artikkel i tidsskrift (Annet (populærvitenskap, debatt, mm))
  • 114.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Lagrad snö kyler Sundsvalls sjukhus1999Inngår i: Energi och miljö, ISSN 1101-0568, Vol. 70, nr 4, s. 68-Artikkel i tidsskrift (Annet (populærvitenskap, debatt, mm))
  • 115.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Large-scale thermal energy storage2000Inngår i: Winter Cities 2000: Energy and Environment. Proceedings, Luleå, 2000Konferansepaper (Annet vitenskapelig)
  • 116.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Lulevärme1984Inngår i: Borrhålsvärmelager: temadag vid Högskolan i Luleå 21 november 1984 / [ed] Bo Nordell, Högskolan i Luleå , 1984, s. 76-82Konferansepaper (Annet vitenskapelig)
  • 117.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Measurement of P -T coexistence curve for ice-water mixture1990Inngår i: Cold Regions Science and Technology, ISSN 0165-232X, E-ISSN 1872-7441, Vol. 19, nr 1, s. 83-88Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The pressure-melting curve of ice is often found in literature dealing with ice problems. This curve originates from the excellent experimental works of G. Tammann* and P.V. Bridgman**. The method used means that ice at constant temperature is submitted to an external pressure. When increasing the pressure a sudden volume change occurs, the pressure-melting point is reached. Results from their works are summarized in this paper. An alternative experimental method was used in this study. Water is confined in a filled-up pressure tank. The water is then cooled from an initial temperature of 0°C. The ice formed creates a pressure increase in the ice-water mixture. At any temperature a corresponding pressure occurs at phase equilibrium. The temperature and the pressure are measured in the ice-water mixture. The results are in good agreement with earlier measurements. The method used, which is easy to handle even with this prototype equipment, should be more accurate than the old method since one possible source of error (the external pressure) is eliminated. The method could be used for other substances than pure water.

  • 118.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Mysterium med roterande isflak uppklarat1987Inngår i: Illustrerad vetenskap, ISSN 0281-9341, nr 8, s. 72-73Artikkel i tidsskrift (Annet (populærvitenskap, debatt, mm))
  • 119.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Mysterium med roterande isflak uppklarat1987Inngår i: Illustrerad vetenskap, ISSN 0281-9341, nr 8, s. 72-73Artikkel i tidsskrift (Annet (populærvitenskap, debatt, mm))
  • 120.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Pressure-melting of ice1989Inngår i: POAC '89: 10th International conference on port and ocean engineering under arctic conditions / [ed] Kenneth B.E. Axelsson; Lennart Å. Fransson, Luleå: Luleå tekniska universitet, 1989, Vol. 1, s. 249-258Konferansepaper (Annet vitenskapelig)
    Abstract [sv]

    The pressure-melting curve of ice is often found in literature deling with ice problems. This curve originates form the eexcellent experimental works of G. Tammann (1903) and P.V. Bridgman (1912). The method used means that ice at constant temperature is submitted to an external pressure. When increasing the pressure a sudden volume change occurs, the pressure-melting point is reached. Results from their works are summarized in this paper.

    An alternative experimental method was used in this study. Water is confined in a filled up pressure tank. The water is then cooled from an initial temerature of 0°C. The ice formed creates a pressure incerase in the ice-water mixture. At any temperature a corresponding pressure occurs at phase equilibrium. The temperature and the pressure are measured in the ice-water mixture. The results are in good agreement with earlier measurements. The method used, which is easy to handle even with this prototype equipment, should be more accurate than the old method since one possible source of error (the external pressure) is eliminated. The method could be used for other substances than pure water.

  • 121.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Renewable energy systems and storage1999Konferansepaper (Annet vitenskapelig)
  • 122.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Reply to the comment of C. Covey et al. on "Thermal pollution causes global warming", by B. Nordell [Global Planet. Change 38 (2003), 305-312]2005Inngår i: Global and Planetary Change, ISSN 0921-8181, E-ISSN 1872-6364, Vol. 47, nr 1, s. 74-Artikkel i tidsskrift (Annet vitenskapelig)
  • 123.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Reply to the comment of J. Gumbel and H. Rodhe on "Thermal pollution causes global warming", by B. Nordell [Global Planet. Change 38 (2003), 305-312]2005Inngår i: Global and Planetary Change, ISSN 0921-8181, E-ISSN 1872-6364, Vol. 47, nr 1, s. 77-78Artikkel i tidsskrift (Annet vitenskapelig)
  • 124.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Sammandrag av boken Kaos, James Gleick 19881989Rapport (Annet vitenskapelig)
    Abstract [en]

    This summary is a personal reflection of a wonderful book on a most interesting subject. .

  • 125.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Seasonal heat storage in rock at Luleå Sweden1985Inngår i: Tunnel-City 1985, Praha: Czechoslovak Tunnelling Committee , 1985, s. 270-279Konferansepaper (Fagfellevurdert)
    Abstract [en]

    A seasonal heat storage system was constructed in 1982-83 at Lulea University of Technology. The heat extraction from the storage system, 2 GWh, corresponds to the heat demand of 100 one-family-houses in northern Sweden. The store has been in operation since July, 1983. The borehole heat store consists of a rock volume of 100,000 m**3, perforated by 120 vertical boreholes to a depth of 65m. The heat is stored in the rock volume itself. The boreholes work as heat exchangers. During the summer the heat store is supplied with heat via the district heating network. During the winter the heat is utilized for heating of one of the university buildings. Construction, operation and functioning of the heat store is evaluated in a research project conducted by WREL.

  • 126.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Seasonal snow storage for cooling of the Sundsvall hospital1999Konferansepaper (Annet vitenskapelig)
  • 127.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Seasonal storage of thermal energy1999Inngår i: Circumpolar change: building a future on experiences from the past : proceeding, Luleå tekniska universitet, 1999, s. 253-263Konferansepaper (Annet vitenskapelig)
  • 128.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Solar heated high temperature seasonal heat store for low temperature heating of 90 single-family houses1998Inngår i: Low Temperature Systems in Buildings, Stockholm: Kungl. Tekniska Högskolan , 1998Kapittel i bok, del av antologi (Annet vitenskapelig)
    Abstract [en]

    A solar heated thermal energy storage system for low temperature heating of 90 single-family houses in Danderyd, Sweden, was recently demonstrated in a pre-study. No heat pump was included and the peak heating demand was produced by electrical heaters. The in-the-floor heat distribution system was designed for 30oC supply temperature and the solar fraction of the system was 60%. The annual mean storage temperature varied between 30oC - 45oC in the suggested borehole heat store with a storage volume of 60000 m3 in crystalline rock. The economy of the system shows that the annual cost of this system is comparable to conventional heating systems. The annual cost (capital, energy, maintenance etc.) were investigated for 1/Solar System 2/ Small-Scale DH 3/Individual HP. The annual costs were 1070 kSEK, 1195 kSEK and 1019 kSEK respectively and the corresponding heat costs were 1000 SEK/MWh, 1100 SEK/MWh and 920 SEK/MWh. The total heat demand (1080 MWh) was really too small, from the seasonal storage point of view. In a three times larger system the suggested solar system would have been the most favourable system because of the reduced relative heat loss from the heat storage system.

  • 129.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Sommarsol för året-runt-uppvärmning i Danderyd2000Inngår i: Samhällsbyggaren : medlemstidning för Samhällsbyggnadstekniska föreningen, s. 8-9Artikkel i tidsskrift (Annet (populærvitenskap, debatt, mm))
  • 130.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Säsongslagring av värme och kyla1999Konferansepaper (Fagfellevurdert)
  • 131.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    The borehole heat store in rock at the Lulea University of Technology: constructional and operational experience : The Lulevärme Project 1982-19851988Inngår i: Tunnelling and Underground Space Technology, ISSN 0886-7798, E-ISSN 1878-4364, Vol. 3, nr 1, s. 85-Artikkel i tidsskrift (Annet vitenskapelig)
    Abstract [en]

    Constructional work on the borehole heat store in Lulea was started in August 1982, and the store was started up in July 1983. The work was carried out on a turnkey basis by Svenska Energi System AB (SES), Lulea. The objective of the project is to demonstrate and investigate borehole heat storage technology in this experimental heat store. The actual heat store itself consists of a volume of rock amounting to about 100,000 m**3, beneath an overburden of mineral soil 2-6 m in depth. 120 boreholes have been drilled in the bedrock to a depth of 65 m, and serve as heat exchangers when charging and discharging the store. Much of the research program involves measurements intended to document performance of the store.

  • 132.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    The borehole heat store in rock at the Luleå University of Technology: constructional and operational experience : The Lulevärme Project 1982-19851987Rapport (Annet vitenskapelig)
    Abstract [en]

    Review: Construction of a borehole heat store in Lulea, Sweden, began in August 1982. This seasonal heat store consists of 100 000 m s of granite. The rock volume is perforated by 120 boreholes to a depth of 65 m. The heat store has been in operation since 1983. The research work, funded by the Swedish Council for Building Research and conducted at the Lulea University of Technology, will continue until 1988. This research report describes the design and construction of the Lulea store.

  • 133.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    The borehole heat store in rock at the Luleå University of Technology: Constructional and operational experience The Lulevärme project 1982 - 19851987Rapport (Annet vitenskapelig)
  • 134.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    The Dowsing Reaction Originates From Piezolectric Effect in Bone1988Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    Current paper summarizes ancient and modern research on dowsing. It also describes how old folk medicine have linked rheumatic pains to dowsing. Typical old cures to ease rheumatic pains were to get stung by a bee, burning nettles or jelly-fish. This was of course painful but the long-term effect was that the rheumatics pains were gone for weeks after that. This was also the starting point of current study as it was concluded that it was the piezoelectric properties of bone that explaned why those old methods seem to work. This explanation is described in detail and so is the performed laboratory test. It was concluded that the dowsing reaction is a physical reality or rather that the dowsing reactions occur under certain conditions. Performed initial tests on bone (forearm) of pig showed that a voltage of 5 V can easily be obtained by frequent knockings on top of the test bone. The paper ends with suggestions of continued research.

  • 135.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Thermal pollution causes global warming2003Inngår i: Global and Planetary Change, ISSN 0921-8181, E-ISSN 1872-6364, Vol. 38, nr 3-4, s. 305-312Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Over longer time-scales there is no net heat inflow to Earth since incoming solar energy is re-emitted at exactly the same rate. To maintain Earth's thermal equilibrium, however, there must be a net outflow equal to the geothermal heat flow. Performed calculations show that the net heat outflow in 1880 was equal to the geothermal heat flow, which is the only natural net heat source on Earth. Since then, heat dissipation from the global use of nonrenewable energy sources has resulted in additional net heating. In, e.g. Sweden, which is a sparsely populated country, this net heating is about three times greater than the geothermal heat flow. Such thermal pollution contributes to global warming until the global temperature has reached a level where this heat is also emitted to space. Heat dissipation from the global use of fossil fuels and nuclear power is the main source of thermal pollution. Here, it was found that one third of current thermal pollution is emitted to space and that a further global temperature increase of 1.8 °C is required until Earth is again in thermal equilibrium.

  • 136.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Thermal Response Test (TRT) State-of-the art 2011: IEA ECES ANNEX 212011Rapport (Fagfellevurdert)
    Abstract [en]

    Proper design of ground heat exchangers in ground source heat pump systemsrequires a good estimate of the thermal conductivity of the ground to avoid oversizing or under-sizing of the ground heat exchanger. A good estimate of thethermal conductivity is also needed when designing a BTES (Borehole ThermalEnergy Storage) system. The ground thermal properties may be measured at aspecific location (in situ) using what is usually referred to as a thermal responsetest (TRT). In such tests, a heat injection or extraction (often at constant rate) isimposed on a test borehole. The resulting temperature response is used todetermine the ground thermal conductivity, and to test the performance ofboreholes. Since the initial mobile test rigs were built in 1995 in Sweden and theU.S.A., this technology has spread to an increasing number of countries.Within the framework of the International Energy Agency (IEA), and theImplementing Agreement on Energy Storage through Energy Conservation(ECES), the overall objectives of the international co-operation project Annex 21“Thermal Response Test” were to compile TRT experiences worldwide in order to identify problems; carry out further development; disseminate gained knowledge; promote the technology.Current report is the result of the work within the Annex 21 Subtask 1 and gives a summary of known thermal response testing activities in the world and the state-of-the-art of the technology until December 2011.

  • 137.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Underground seasonal storage of cold: measurements and simulations1999Konferansepaper (Annet vitenskapelig)
  • 138.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Underground Thermal Energy Storage (UTES)2013Inngår i: Innostock 2012, The 12th International Conference on Energy Storage: Proceedings / [ed] Lluisa Cabeza, LLeida, Spain, 2013Konferansepaper (Fagfellevurdert)
    Abstract [en]

    This keynote lecture summarizes the UTES state-of-the-art. It includes energy storage in aquifers (ATES), borehole thermal energy storage (BTES), rock cavern energy storage (CTES) and also large scale seasonal snow storage systems (SSS). It also includes a summary of current thermal response test (TRT) research and gives a summary of focus of the previous "Stock" conferences. The concluding remarks indicates the development trends of the different storage technologies.

  • 139.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Using ice and snow in thermal energy storage systems2014Inngår i: Advances in Thermal Energy Storage Systems: Methods and Applications, Cambridge: Woodhead Publishing Limited, 2014, s. 187-200Kapittel i bok, del av antologi (Fagfellevurdert)
    Abstract [en]

    Ice and snow have been used since ancient times for cooling until they were replaced by modern refrigeration in the 1950s. In recent years, however, we have seen a renewed interest in the old cooling technologies. Here, some modern large-scale snow cooling plants are described. The stored snow can be snow that is removed from city centers and roads but it is also possible to produce snow at low cost, provided that the ambient air temperature is less than −2 °C. The cooling power of snow storage is unlimited because of its constant melting temperature of 0 °C. The value of 1 ton of stored snow is €10–25 depending on the cost of electricity.

  • 140.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Varmelagring i fjell, løsmasser og vann: Borhullslager i LuleåManuskript (preprint) (Annet vitenskapelig)
  • 141.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Värmelager i berg1981Konferansepaper (Annet vitenskapelig)
  • 142.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Värmelagring i berg1982Inngår i: Energiforskning - samhällskonsekvenser, Uppsala: Kontaktsekretariaten vid Uppsala och Stockholms universitet , 1982Konferansepaper (Annet vitenskapelig)
  • 143.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Värmeutsläpp och global uppvärmning: teknik och forskning2008Inngår i: Energi och miljö, ISSN 1101-0568, nr 5, s. 66-68Artikkel i tidsskrift (Annet vitenskapelig)
  • 144.
    Nordell, Bo
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Ahlström, A-K
    Freezing problems in borehole heat exchangers2006Inngår i: Thermal Energy Storage for Sustainable Energy Consumption: Fundamentals, Case Studies and Design. Proceedings of the NATO Advanced Study Institute on Thermal Energy Storage for Sustainable Energy Consumption - Fundamentals, Case Studies and Design, Izmir, Turkey, 6-17 June 2005, Dordrecht: Encyclopedia of Global Archaeology/Springer Verlag, 2006, s. 193-204Kapittel i bok, del av antologi (Annet vitenskapelig)
  • 145.
    Nordell, Bo
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Andersson, Olof
    Geostrata HB.
    Rydell, Leif
    XYLEM Water Solutions Manufacturing AB.
    Scorpo, Alberto Liuzzo
    Long-term Performance of the HT-BTES in Emmaboda, Sweden2015Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The Emmaboda HT-BTES was taken into operation 2010. Since then ~10 GWh has been stored, only a fraction has been extracted, and a storage temperature of 40-45 oC has been reached. The purpose of the BTES is to utilize waste heat from the industrial processes. Heat sources have been added annually and in 2015 the predicted heat injection (3.6 GWh/year) will be reached. Performed simulations are based on actual heat injection and extraction. The simulation model can reasonably well predict the future operation of the BTES. Initial problems with circulating the heat carrier at a slight vacuum pressure have been solved by using vacuum pumps to degas the fluid. The BTES has reduced the amount of bought district heating by approximately 4 GWh/year. To improve the system further, and reduce heat losses, it is suggested that a heat pump should be installed for heat extraction.

  • 146.
    Nordell, Bo
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten. Lillpite älvdals ekonomiska förening.
    Bergman, Gunnar
    Lillpite älvdals ekonomiska förening.
    Wiklund, Matz
    Lillpite älvdals ekonomiska förening.
    Development of the Lillpite River Valley after Dam Removal2018Konferansepaper (Annet (populærvitenskap, debatt, mm))
    Abstract [en]

    The Lillpite River Valley stretches 45 km NV, from Piteå at the Gulf of Bothnia. The 619 km2 large catchment area comprises a dozen lakes. The average flow rate of the river is 6.24 m3/s. Lillpite Kraft AB, which owns the two power plants in the Lillpite River, has now applied for a demolition permit after 30 years of unprofitable operation. This demolition will take place in 2020, after which there are no obstacles to the fish's migration in the river. The Lillpite River was famous for its large salmon but also for its trout, grayling and lamprey. River crayfish and freshwater pearl mussel exist in the river, both upstream and downstream of the two dams, and in the brooks. There are even eel and pikeperch in the river, which also hosts beaver and otter. The Lillpite River Economic Association manages the compensation (~30M€ over 50 years) for the wind power intrusion in the area. This organisation is committed to make the river the fishing water it once was, as a driving force for the development of the river valley. At this seminar, we seek your help and advice based on knowledge and experience. How to determine the river status before and after dam removal? River erosion? Timeline after dam removal? Evaluation of ecology and biodiversity? How to improve conditions for fish, crustaceans and pearl mussel? How to meet sceptical locals? What should/could we do before the dam removal?

  • 147.
    Nordell, Bo
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Bjarnholt, Gjert
    Swedish Detonic Research Foundation, Luleå.
    Stephansson, Ove
    Luleå tekniska universitet.
    Torikka, Arne
    Luleå tekniska universitet.
    Fracturing of a pilot plant for borehole heat storage in rock1986Inngår i: Tunnelling and Underground Space Technology, ISSN 0886-7798, E-ISSN 1878-4364, Vol. 1, nr 2, s. 195-208Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This paper describes research on a pilot plant in Luleå, Sweden. The plant consists of 19 boreholes, 52 mm in diameter, for heat supply and extraction; and 10 boreholes for temperature monitoring. All the boreholes are 21 m deep. The report describes in detail the performance and results of rock mass permeability and borehole permeability tests. It also discusses hydraulic fracturing and explosive fracturing in the boreholes. A simulation model of water flow in the test plant is described. The paper includes conclusions from the test results and recommendations for further study.

  • 148.
    Nordell, Bo
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Dikici, Derya
    Winter air as a source for cold storage injection1998Konferansepaper (Fagfellevurdert)
    Abstract [en]

    There is an increasing interest in Low Temperature Underground Thermal Energy Storage (LT UTES) for the purpose of space cooling. Some of the different types of UTES systems, with an anti-freeze heat carrier in a closed pipe system, tolerate injection temperatures below freezing. Thus, seasonal storage of cold with injection temperatures below freezing would be possible in large Borehole Thermal Energy Stores (BTES). The most obvious cold source is the cold winter air. There is however very little experience of low temperature cold extraction from air for injection into the ground.A low temperature cold injection field test was performed during the winter of 1997/98 at Luleå University of Technology. The test was performed in one 65 m borehole drilled vertically into the crystalline bedrock. Cold was extracted from the winter air at occurring air temperatures - i.e. sometimes well below -30°C. The aim of this test was to obtain experience of problems associated with cold extraction from the air and cold injection into the ground.

  • 149.
    Nordell, Bo
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Dim, J.
    Global warming and thermal pollution2003Inngår i: Proceedings: Futurestock 2003, 9th International Conference on Thermal Energy Storage : Warsaw, Poland, September 1 - 4, 2003, Warszawa: PW Publishing House , 2003, s. 27-32Konferansepaper (Fagfellevurdert)
  • 150.
    Nordell, Bo
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Engström, Maria
    Seasonal groundwater turnover2006Inngår i: Nordic Hydrology, ISSN 0029-1277, E-ISSN 1996-9694, Vol. 37, nr 1, s. 31-39Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Seasonal air temperature variations and corresponding changes in groundwater temperature cause convective movements in groundwater similar to the seasonal turnover in lakes. Numerical simulations were performed to investigate the natural conditions for thermally driven groundwater convection to take place. Thermally driven convection could be triggered by a horizontal groundwater flow, Convection then starts at a considerably lower Rayleigh number (Ra) than the general critical Rayleigh number (Ra assuming that 10 degrees C groundwater is cooled to 4 degrees C, i.e. heated from below convection in porous media, This study supports the hypothesis that seasonal temperature variations, under certain conditions, initiate and drive thermal convection.

12345 101 - 150 of 201
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf